- Three Axios of Probability 機率三公理
- Conditional Probability 條件機率
- Independent Events
- Counting
- Random Variables
- For any event A, P(A) >= 0
- P(S) = 1 (S = 樣本空間)
- if events A1, A2, ... 互斥 (互斥:不可能同時發生) => P(A1⋃A2⋃A3...) = P(A1)+P(A2)+P(A3)...
- P(∅) = 0: Empty set
S \cap ∅ = ∅: S, ∅ mutually exclusive 加以 S \cup ∅ = S => P(S) = P(S \cup ∅) = P(S) + P(∅) => P(∅) = 0
- P(A) + P(A') = 1: Complement
- P(A) = P(A-B) + P(A∩B): DeMorgan's Law
- P(A⋃B) = P(A) + P(B) - P(A∩B): Union and Intersection
- If
$A \in B$ => P(A) <= P(B): Inclusion-Exclusion Principle - Bool's Inequality: n個事件的連集機率 <= n個事件的機率之和
- Bonferroni's Inequality: n個事件交集的機率 >= 1 - n個事件補集的機率之和
I love this formula, it's so simple and elegant.
多事件的獨立:
在 n 個事件中任取 m 個事件,若全部皆滿足:
則稱這 n 個事件為獨立事件。
若 n = 5,要計算
- Distinguishable
- With/Without Replacement
- Order matters or not