/NopeSAC

NOPE-SAC: Neural One-Plane RANSAC for Sparse-View Planar 3D Reconstruction

Primary LanguagePythonMIT LicenseMIT

NOPE-SAC: Neural One-Plane RANSAC for Sparse-View Planar 3D Reconstruction [arXiv]

Bin Tan, Nan Xue, Tianfu Wu, Gui-Song Xia


image

Highlights

  • We present a novel approach, i.e., NOPE-SAC, to address the challenging problem of sparse-view planar 3D reconstruction in a RANSAC framework.
  • We show that accurate camera poses can be achieved from only a few plane correspondences with the proposed neural one-plane pose hypotheses, thus incurring any offline optimization procedures.
  • Our method sets several new state-of-the-art performances on both the Matterport3D and the ScanNet datasets for pose estimation and holistic planar reconstruction.

Installation

conda env create -f environment.yml
conda activate NopeSAC

Data prepare

Matterport3D dataset

Please download the processed sparse-view data of Matterport3D from SparsePlanes and unzip them into 'datasets/'. The structure of the data file should be like:

/datasets
|-- mp3d_dataset
    |-- mp3d_planercnn_json
        |-- cached_set_test.json
        |-- cached_set_val.json
        |-- cached_set_train.json
    |-- obversions
        |-- ...
    |-- rgb
        |-- ...

ScanNet dataset

To run our code on the ScanNet dataset, you have to download the raw data of ScanNetV2 and then download the our sparse-view annotations form here. The structure of the data file should be like:

/datasets
|-- scannet_dataset
    |-- scannet_json
        |-- cached_set_trainV2.json
        |-- cached_set_testV2.json
    |-- twoView_Anns
        |-- sceneXXXX_XX/...
        |-- ...
    |-- scans
        |-- sceneXXXX_XX
            |-- color/...
            |-- depth/...
        |-- ...

Inference and Evaluation

Download the pretrained models from here and save them into 'models/'. Then, you can run the following command to inference with the pretrained model on the Matterport3D and ScanNet datasets.

# inference on mp3d dataset
python test_NopeSAC.py \
--config-file configs/inference_mp3d.yaml \
--num-gpus 4 \
--eval-only \
TEST.EVAL_FULL_SCENE True \
MODEL.CAMERA_HEAD.INFERENCE_OUT_CAM_TYPE "soft" \
DATASETS.ROOT_DIR 'datasets/mp3d_dataset/'

# test NopeSAC on scannet dataset
#CUDA_VISIBLE_DEVICES=3 python test_NopeSAC.py \
#--config-file configs/inference_scannet.yaml \
#--num-gpus 4 \
#--eval-only \
#TEST.EVAL_FULL_SCENE True \
#MODEL.CAMERA_HEAD.INFERENCE_OUT_CAM_TYPE "soft" \
#DATASETS.ROOT_DIR 'datasets/scannet_dataset/'

After inference, you can run the following command to evaluate the results. Or you can also directly download our inference results from here and save them into 'results/'.

# evaluate plane reconstrucction on the Matterport3D dataset
python eval.py \
--config-file configs/inference_mp3d.yaml \
--rcnn-cached-file ./results/mp3d_testSet/NopeSAC_instances_predictions.pth \
--evaluate AP \
--num-process 16 \
--dataset-phase "mp3d_test" \
--optimized-dict-path ./results/mp3d_testSet/continuous.pkl

# evaluate camera pose on the Matterport3D dataset
python eval.py \
--config-file configs/inference_mp3d.yaml \
--rcnn-cached-file ./results/mp3d_testSet/NopeSAC_instances_predictions.pth \
--evaluate camera \
--num-process 16 \
--dataset-phase "mp3d_test" \
--optimized-dict-path ./results/mp3d_testSet/continuous.pkl

# evaluate plane reconstrucction on the ScanNet dataset
python eval.py \
--config-file configs/inference_scannet.yaml \
--rcnn-cached-file ./results/scannet_testSet/NopeSAC_instances_predictions.pth \
--evaluate AP \
--num-process 16 \
--dataset-phase "scannet_test" \
--optimized-dict-path ./results/scannet_testSet/continuous.pkl

# evaluate camera pose on the the ScanNet dataset
python eval.py \
--config-file configs/inference_scannet.yaml \
--rcnn-cached-file ./results/scannet_testSet/NopeSAC_instances_predictions.pth \
--evaluate camera \
--num-process 16 \
--dataset-phase "scannet_test" \
--optimized-dict-path ./results/scannet_testSet/continuous.pkl

Training

You can run the following command to train our NOPE-SAC on the Matterport3D dataset:

# train NopeSAC on mp3d dataset (step1)
python train_NopeSAC.py \
--config-file configs/train_mp3d_step1.yaml \
--num-gpus 4 \
--resume \
DATASETS.ROOT_DIR 'datasets/mp3d_dataset/'

# train NopeSAC on mp3d dataset (step2)
python train_NopeSAC.py \
--config-file configs/train_mp3d_step2.yaml \
--num-gpus 4 \
--resume \
DATASETS.ROOT_DIR 'datasets/mp3d_dataset/'

# train NopeSAC on mp3d dataset (step3)
python train_NopeSAC.py \
--config-file configs/train_mp3d_step3.yaml \
--num-gpus 4 \
--resume \
DATASETS.ROOT_DIR 'datasets/mp3d_dataset/'

You can run the following command to train our NOPE-SAC on the ScanNet dataset:

# train NopeSAC on scannet dataset (step1)
python train_NopeSAC.py \
--config-file configs/train_scannet_step1.yaml \
--num-gpus 4 \
--resume \
DATASETS.ROOT_DIR 'datasets/scannet_dataset/'

# train NopeSAC on scannet dataset (step2)
python train_NopeSAC.py \
--config-file configs/train_scannet_step2.yaml \
--num-gpus 4 \
--resume \
DATASETS.ROOT_DIR 'datasets/scannet_dataset/'

Visualization

  • TODO

Citations

If you find our work useful in your research, please consider citing:

@article{NOPESAC,
title = "NOPE-SAC: Neural One-Plane RANSAC for Sparse-View Planar 3D Reconstruction",
author = "Bin Tan and Nan Xue and Tianfu Wu and Gui-Song Xia",
journal = {arXiv:2211.16799},
year = {2022}
}

Acknowledgement

This repo largely benefits from SparsePlanes. We thank the authors for their great work.