比赛网址 for more information: https://competitions.codalab.org/competitions/21012
标签 | value | nickname |
---|---|---|
食管 | 1 | red |
心脏 | 2 | pink |
气管 | 3 | yellow |
动脉 | 4 | blue |
时间 | 食管 | 心脏 | 气管 | 主动脉 |
---|---|---|---|---|
3月17日 | 0.8452(第五名) | 0.9328(第十八) | 0.9039(第十四) | 0.9115(第十六) |
3月22日 | 0.8513(第七名) | 0.9457(第九名) | 0.9083(第十五) | 0.9175(第二十四) |
--
目前有优于以上的成绩的模型。
食管: RED
心脏: PINK
气管: YELLOW
主动脉: BLUE
example
The whole SegTHOR dataset (60 patients and 11084 slices) has been randomly split into:
- a training set: 40 patients, 7390 slices
- a testing set: 20 patients, 3694 slices
graph LR;
A[train set 40]-->B[for val 8];
A-->C[for train 32];
Inference https://github.com/qubvel/segmentation_models
Backbone model | Name | Weights |
---|---|---|
VGG16 | vgg16 |
imagenet |
VGG19 | vgg19 |
imagenet |
ResNet18 | resnet18 |
imagenet |
ResNet34 | resnet34 |
imagenet |
ResNet50 | resnet50 |
imagenet imagenet11k-places365ch |
ResNet101 | resnet101 |
imagenet |
ResNet152 | resnet152 |
imagenet imagenet11k |
ResNeXt50 | resnext50 |
imagenet |
ResNeXt101 | resnext101 |
imagenet |
DenseNet121 | densenet121 |
imagenet |
DenseNet169 | densenet169 |
imagenet |
DenseNet201 | densenet201 |
imagenet |
Inception V3 | inceptionv3 |
imagenet |
Inception ResNet V2 | inceptionresnetv2 |
imagenet |
graph LR;
F[3D cube]-->E(确定图像中心);
E-->V(3D crop)
V-.flatten.->G[单张slice]
graph LR;
F[train CT image]-->E[HU mean for ev Pat];
L[train mask]-->E[ww and wl];
E-->G(train for norm CT image)
H[test CT image]-->Q[ww and wl];
O[test mask predict by older model]-->Q[ww and wl];
Q-->I(test for norm CT image)
效果图:
example