/text_recognition_toolbox

text_recognition_toolbox: The reimplementation of a series of classical scene text recognition papers with Pytorch in a uniform way.

Primary LanguagePython

text recognition toolbox

1. 项目介绍

该项目是基于pytorch深度学习框架,以统一的改写方式实现了以下6篇经典的文字识别论文,论文的详情如下。该项目会持续进行更新,欢迎大家提出问题以及对代码进行贡献。

模型 论文标题 发表年份 模型方法划分
CRNN 《An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition》 2017 CNN+BiLSTM+CTC
GRCNN 《Gated recurrent convolution neural network for OCR》 2017 Gated Recurrent Convulution Layer + BiSTM + CTC
FAN 《Focusing attention: Towards accurate text recognition in natural images》 2017 focusing network+1D attention
SAR 《Show, attend and read: A simple and strong baseline for irregular text recognition》 2019 ResNet+2D attention
DAN 《Decoupled attention network for text recognition》 2020 FCN+convolutional alignment module
SATRN 《On Recognizing Texts of Arbitrary Shapes with 2D Self-Attention》 2020 Transformer

2. 如何使用

2.1 环境要求

torch==1.3.0
numpy==1.17.3
lmdb==0.98
opencv-python==3.4.5.20

2.2 训练

  • 数据准备

首先需要准备训练数据,目前只支持lmdb格式的数据,数据转换的步骤如下:

  1. 准备图片数据集,图片是根据检测框进行切分后的数据
  2. 准备label.txt,标注文件需保持如下的格式
1.jpg 文字检测
2.jpg 文字识别
  1. 进行lmdb格式数据集的转换
python3 tools/create_lmdb_dataset.py --inputPath {图片数据集路径} --gtFile {标注文件路径} --outputPath {lmdb格式数据集保存路径}
  • 配置文件

目前每个模型都单独配备了一个配置文件,这里以CRNN为例, 配置文件主要参数的含义如下:

一级参数 二级参数 参数含义 备注
TrainReader dataloader 自定义的DataLoader类
select_data 选择使用的lmdb格式数据集 默认为'/',即使用{lmdb_sets_dir}路径下所有的lmdb数据集。如果想控制同一个batch里不同数据集的比例,可以配合{batch_ratio}使用,并将数据集名称用'-'进行分割,例如设置成'数据集1-数据集2-数据集3'
batch_ratio 控制在一个batch中,各个lmdb格式数据集的比例 配合{select_data}进行使用,将比例用'-'进行分割,例如设置成'0.3-0.3-0.4'。即数据集1使用batch_size * 0.3的比例,剩余的数据集以此类推。
total_data_usage_ratio 控制使用的整体数据集比例 默认为1.0,即使用全部的数据集
padding 是否对数据进行padding补齐 默认为True,设置为False即采用resize的方式
Global highest_acc_save_type 是否只保存识别率最高的模型 默认为False
resumed_optimizer 是否加载之前保存的optimizer 默认为False
batch_max_length 最大的字符串长度 超过这个字符串长度的训练数据会被过滤掉
eval_batch_step 保存模型的间隔步数
Architecture function 使用的模型 此处为'CRNN'
SeqRNN input_size LSTM输入的尺寸 即backbone输出的通道个数
hidden_size LSTM隐藏层的尺寸
  • 模型训练

完成上述配置后,使用以下命令即可开始模型的训练:

python train.py -c configs/CRNN.yml

2.3 预测

  • 配置文件

同样地,针对模型预测,也都单独配备了一个配置文件,这里以CRNN为例, 需要修改的配置参数如下:

一级参数 二级参数 参数含义 备注
Global pretrain_weights 模型文件路径 剩余配置参数和训练保持一致即可
infer_img 待预测的图片,可以是文件夹或者是图片路径
  • 模型预测

完成上述配置后,使用以下命令即可开始模型的预测:

python predict.py -c configs/CRNN.yml

3. 预训练模型

以下是5个开源的中文自然场景数据集,可以直接根据上述的模型配置进行模型训练:

数据集 网盘地址 备注
一共包括5个自然场景训练集:
ArT_train, LSVT_train, MTWI_train, RCTW17_train, ReCTS_train
以及一个自然场景验证集:ReCTS_val
链接: https://pan.baidu.com/s/1fvExHzeojA_Yhj3_wDflwA
提取码: kzrd
"train"是训练集,"val"是验证集

以下为5个算法的预训练模型,训练的明细请见第4部分里的实验设定:

模型 网盘地址 备注
一共包含5个预训练模型:CRNN.pth, GRCNN.pth, FAN.pth, DAN.pth, SAR.pth
以及一个字典文件:keys.txt
链接: https://pan.baidu.com/s/1IG-1lxytrOqry9c5Nc1GzQ
提取码: k3ij

4. 实验结果

针对目前已复现的5个算法,我用统一的数据集以及参数设定进行了实验对比,实验设定以及实验结果如下:

  • 实验设定
实验设定 明细 备注
训练集 ArT_train:44663
LSVT_train:218552
MTWI_train:79964
RCTW17_train:33342
ReCTS_train:83119
这5个均为开源自然场景数据集,其中做了剔除模糊数据等处理
验证集 ReCTS_val:9231 测试集为从ReCTS中按照9:1比例划分的验证集,注意ReCTS以水平文本居多
batch_size 128
img_shape [1, 32, 256] 尺寸进行等比例放缩,小于256的进行padding,大于256的resize至256
optimizer function: adam
base_lr: 0.001
momentum: 0.9
weight_decay: 1.0e-4
iter 60000 一共训练了60000步,每2000步会进行一次验证
  • 实验结果
算法 最高识别率 最大正则编辑距离 模型大小
CRNN 59.89 0.7959 120M
GRCNN 70.51 0.8597 78M
FAN 75.78 0.8924 764M
SAR 78.13 0.9037 722M
DAN 78.99 0.9064 639M

下图为各个算法在验证集上的识别率,每2000步会进行验证:

fig1

  • 预测结果示例
算法 预测结果 备注
CRNN image-20210121152011971 预测结果均取自验证集识别率最高的模型,
左边一列为预测结果,右边为标注结果
GRCNN image-20210121152134249
FAN image-20210121152239497
SAR image-20210121152325124
DAN image-20210121152407344