Code supporting the paper:
Amaia Salvador, Michal Drozdzal, Xavier Giro-i-Nieto, Adriana Romero. Inverse Cooking: Recipe Generation from Food Images. CVPR 2019
If you find this code useful in your research, please consider citing using the following BibTeX entry:
@InProceedings{Salvador2019inversecooking,
author = {Salvador, Amaia and Drozdzal, Michal and Giro-i-Nieto, Xavier and Romero, Adriana},
title = {Inverse Cooking: Recipe Generation From Food Images},
booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2019}
}
This code uses Python 3.6 and PyTorch 0.4.1 cuda version 9.0.
- Installing PyTorch:
$ conda install pytorch=0.4.1 cuda90 -c pytorch
- Install dependencies
$ pip install -r requirements.txt
- Download ingredient and instruction vocabularies here and here, respectively.
- Download pretrained model here.
You can use our pretrained model to get recipes for your images.
Download the required files (listed above), place them under the data
directory, and try our demo notebook src/demo.ipynb
.
Note: The demo will run on GPU if a device is found, else it will use CPU.
- Download Recipe1M (registration required)
- Extract files somewhere (we refer to this path as
path_to_dataset
). - The contents of
path_to_dataset
should be the following:
det_ingrs.json
layer1.json
layer2.json
images/
images/train
images/val
images/test
Note: all python calls below must be run from ./src
$ python build_vocab.py --recipe1m_path path_to_dataset
For fast loading during training:
$ python utils/ims2file.py --recipe1m_path path_to_dataset
If you decide not to create this file, use the flag --load_jpeg
when training the model.
Create a directory to store checkpoints for all models you train
(e.g. ../checkpoints
and point --save_dir
to it.)
We train our model in two stages:
- Ingredient prediction from images
python train.py --model_name im2ingr --batch_size 150 --finetune_after 0 --ingrs_only \
--es_metric iou_sample --loss_weight 0 1000.0 1.0 1.0 \
--learning_rate 1e-4 --scale_learning_rate_cnn 1.0 \
--save_dir ../checkpoints --recipe1m_dir path_to_dataset
- Recipe generation from images and ingredients (loading from 1.)
python train.py --model_name model --batch_size 256 --recipe_only --transfer_from im2ingr \
--save_dir ../checkpoints --recipe1m_dir path_to_dataset
Check training progress with Tensorboard from ../checkpoints
:
$ tensorboard --logdir='../tb_logs' --port=6006
- Save generated recipes to disk with
python sample.py --model_name model --save_dir ../checkpoints --recipe1m_dir path_to_dataset --greedy --eval_split test
. - This script will return ingredient metrics (F1 and IoU)
inversecooking is released under MIT license, see LICENSE for details.