/gpucomputationrender-three

GPUComputationRender module for Three.js with ES6 compatibility

Primary LanguageTypeScriptMIT LicenseMIT

GPUComputationRender (ES6)

Typescript definitions inside module

With yarn

    yarn add gpucomputationrender-three

Or with npm

    npm install --save gpucomputationrender-three

Example of usage

https://threejs.org/examples/?q=gpgpu#webgl_gpgpu_birds

I just rewrite module to Typescript

Edvinas pranka

@epranka

https://www.kodmina.lt

I just updated some lines based on the updated code

Yasushi Harada

https://threejs.org/examples/jsm/misc/GPUComputationRenderer.js

Original module author yomboprime https://github.com/yomboprime

GPUComputationRenderer, based on SimulationRenderer by zz85

The GPUComputationRenderer uses the concept of variables. These variables are RGBA float textures that hold 4 floats for each compute element (texel)

Each variable has a fragment shader that defines the computation made to obtain the variable in question.

You can use as many variables you need, and make dependencies so you can use textures of other variables in the shader (the sampler uniforms are added automatically) Most of the variables will need themselves as dependency.

The renderer has actually two render targets per variable, to make ping-pong. Textures from the current frame are used as inputs to render the textures of the next frame.

The render targets of the variables can be used as input textures for your visualization shaders.

Variable names should be valid identifiers and should not collide with THREE GLSL used identifiers.

A common approach could be to use 'texture' prefixing the variable name; i.e texturePosition, textureVelocity...

The size of the computation (sizeX * sizeY) is defined as 'resolution' automatically in the shader. For example:

#DEFINE resolution vec2( 1024.0, 1024.0 )


Basic use:

// Initialization...

// Create computation renderer

var gpuCompute = new GPUComputationRenderer( 1024, 1024, renderer );

// Create initial state float textures

var pos0 = gpuCompute.createTexture();

var vel0 = gpuCompute.createTexture();

// and fill in here the texture data...

// Add texture variables

var velVar = gpuCompute.addVariable( "textureVelocity", fragmentShaderVel, pos0 );

var posVar = gpuCompute.addVariable( "texturePosition", fragmentShaderPos, vel0 );

// Add variable dependencies

gpuCompute.setVariableDependencies( velVar, [ velVar, posVar ] );

gpuCompute.setVariableDependencies( posVar, [ velVar, posVar ] );

// Add custom uniforms

velVar.material.uniforms.time = { value: 0.0 };

// Check for completeness

var error = gpuCompute.init();

if ( error !== null ) {

 console.error( error );

}

// In each frame...

// Compute!

gpuCompute.compute();

// Update texture uniforms in your visualization materials with the gpu renderer output

myMaterial.uniforms.myTexture.value = gpuCompute.getCurrentRenderTarget( posVar ).texture;

// Do your rendering

renderer.render( myScene, myCamera );

Also, you can use utility functions to create ShaderMaterial and perform computations (rendering between textures)

Note that the shaders can have multiple input textures.

var myFilter1 = gpuCompute.createShaderMaterial( myFilterFragmentShader1, { theTexture: { value: null } } );

var myFilter2 = gpuCompute.createShaderMaterial( myFilterFragmentShader2, { theTexture: { value: null } } );

var inputTexture = gpuCompute.createTexture();

// Fill in here inputTexture...

myFilter1.uniforms.theTexture.value = inputTexture;

var myRenderTarget = gpuCompute.createRenderTarget();

myFilter2.uniforms.theTexture.value = myRenderTarget.texture;

var outputRenderTarget = gpuCompute.createRenderTarget();

// Now use the output texture where you want:

myMaterial.uniforms.map.value = outputRenderTarget.texture;

// And compute each frame, before rendering to screen:

gpuCompute.doRenderTarget( myFilter1, myRenderTarget );

gpuCompute.doRenderTarget( myFilter2, outputRenderTarget );