/FGVC-HERBS

Pytorch implementation of "Fine-grained Visual Classification with High-temperature Refinement and Background Suppression"

Primary LanguagePython

Fine-grained Visual Classification with High-temperature Refinement and Background Suppression

PWC

PWC

paper url: https://arxiv.org/abs/2303.06442

The high-temperature refinement module allows the model to learn the appropriate feature scales by refining the features map at different scales and improving the learning of diverse features. And, the background suppression module first splits the features map into foreground and background using classification confidence scores and suppresses feature values in low-confidence areas while enhancing discriminative features. The experimental results show that the proposed HERBS effectively fuses features of varying scales, suppresses background noise, discriminative features at appropriate scales for fine-grained visual classification.The proposed method achieves state-of-the-art performance on the CUB-200-2011 and NABirds benchmarks, surpassing 93% accuracy on both datasets. Thus, HERBS presents a promising solution for improving the performance of fine-grained visual classification tasks.

framework

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

Please note that currently, only the Swin Transformer backbone is supported.

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

1. Environment setting

// We move old version to ./v0/

1.0. Package

1.1. Dataset

In this paper, we use 2 large bird's datasets to evaluate performance:

1.2. Our pretrained model

1.3. OS

  • Windows10
  • Ubuntu20.04
  • macOS (CPU only)

2. Train

  • Single GPU Training
  • DataParallel (single machine multi-gpus)
  • DistributedDataParallel

(more information: https://pytorch.org/tutorials/intermediate/ddp_tutorial.html)

2.1. data

train data and test data structure:

├── tain/
│   ├── class1/
│   |   ├── img001.jpg
│   |   ├── img002.jpg
│   |   └── ....
│   ├── class2/
│   |   ├── img001.jpg
│   |   ├── img002.jpg
│   |   └── ....
│   └── ....
└──

2.2. configuration

you can directly modify yaml file (in ./configs/)

2.3. run

python main.py --c ./configs/config.yaml

model will save in ./records/{project_name}/{exp_name}/backup/

3. HeatMap

python vis_swin_l.py -pr ./backups/CUB200-2011/best.pt --image ./imgs/Laysan_Albatross_0098_621.jpg --save_name Laysan_Albatross_0098_621_heat

eval_running

4. Evaluation

for CUB200-2011.

python run_evaluation.py -pr ./backups/CUB200-2011/ -ir ./datas/test/

-pr: pretrained root

├── pretrained_root/
│   |   ├── config.yaml
│   |   └── best.pt

-ir: images root

├── images_root/
│   |   ├── img001.jpg
│   |   ├── img002.jpg
│   |   └── ....

4.1 running

eval_running

4.2 result

The results will show the fine-class accuracy and the number of outer errors. Outer errors refer to cases where the model predicts the wrong class and this class is not within the fine-class.

eval_result

Future update

  • ResNet, Efficient support
  • Small model
  • Medical image support