/spanish-bert

Pretrain RoBERTa for Spanish from scratch and perform NER on Spanish documents

Primary LanguagePython

SpanBERTa: RoBERTa for Spanish

SpanBERTa is a transformer language model for Spanish. SpanBERTa is of the same size as BERT-Base and is trained on 18 GB of OSCAR’s Spanish corpus following the pretraining approach specified in RoBERTa: A Robustly Optimized BERT Pretraining Approach.

Related Articles

About the Model

Module Download
SpanBERTa config.json, pytorch_model.bin
Tokenizer merges.txt, vocab.json

The model uses a Byte-level BPE tokenizer with a vocabulary size of 50265 sub-word tokens and is trained for 200K steps in 8 days using 4 Tesla V100 GPUs.

Training loss: tensorboard

Usage

The model weights can be loaded using transformers library by Hugging Face.

from transformers import AutoTokenizer, AutoModelWithLMHead

tokenizer = AutoTokenizer.from_pretrained("skimai/spanberta-base-cased")
model = AutoModelWithLMHead.from_pretrained("skimai/spanberta-base-cased")

Example using pipeline:

from transformers import pipeline

fill_mask = pipeline(
    "fill-mask",
    model="skimai/spanberta-base-cased",
    tokenizer="skimai/spanberta-base-cased"
)

fill_mask("Lavarse frecuentemente las manos con agua y <mask>.")
[{'score': 0.6469631195068359,
  'sequence': '<s> Lavarse frecuentemente las manos con agua y jabón.</s>',
  'token': 18493},
 {'score': 0.06074320897459984,
  'sequence': '<s> Lavarse frecuentemente las manos con agua y sal.</s>',
  'token': 619},
 {'score': 0.029787985607981682,
  'sequence': '<s> Lavarse frecuentemente las manos con agua y vapor.</s>',
  'token': 11079},
 {'score': 0.026410052552819252,
  'sequence': '<s> Lavarse frecuentemente las manos con agua y limón.</s>',
  'token': 12788},
 {'score': 0.017029203474521637,
  'sequence': '<s> Lavarse frecuentemente las manos con agua y vinagre.</s>',
  'token': 18424}]