Utilities provides a handful of useful goodies including statistics, numeric arrays and the well-known raiser.
gem install utilities
rspec
-
to_numerics
["3", 4, "7.9"].to_numerics #=> [3.0, 4.0, 7.9]
-
numerics?
[1, 2.0, 3].numerics? #=> true
-
reverse_sort
[1,8,3].reverse_sort #=> [8,3,1]
-
map_with
[1,2,3].map_with([4,5,6]){|i,j| i * j } #=> [4,10,18]
-
wrap
[1, 2, 3].wrap("*") #=> ["*1*", "*2*", "*3*"] [1, 2, 3].wrap("*", "+") #=> ["*1+", "*2+", "*3+"]
-
collect_first
{:a=>1, :b=>2, :c=>3}.collect_first{|k,v| [k, v * 3] if v == 2 } #=> [:b, 6]
-
collect_keys, map_keys (passing true as a parameter will collect keys recursively)
{:a=>1, :b=>2, :c=>3}.collect_keys{|k| k.to_s.upcase } #=> {"A"=>1, "B"=>2, "C"=>3}
-
collect_values, map_values (passing true as a parameter will collect values recursively)
{:a=>1, :b=>2, :c=>3}.collect_values{|v| v * -1 } #=> {:a=>-1, :b=>-2, :c=>-3}
-
symbolize_keys
{"a"=>1, "b"=>2}.symbolize_keys #=> {:a=>1, :b=>2}
-
stringify_keys
{:a=>1, :b=>2}.stringify_keys #=> {"a"=>1, "b"=>2}
-
raiser
raiser 1, Hash.new, Array.new #=> RuntimeError "1, {}, []"
-
degrees
180.degrees == Math::PI #=> true
-
square
2.square #=> 4
-
hour_to_string
14.5.hour_to_string #=> "14:30"
-
sqrt
9.sqrt #=> 3
-
rank
5.rank(3, 9) #=> 0.3333...
-
to_decimals
1.759.to_decimals(2) #=> 1.76
-
percentage_of
48.percentage_of(50) #=> 96
-
attempt
Attempts to call a method on given object. If it fails (nil or NoMethodError), returns nil
nil.attempt(:something) #=> nil "String".attempt(:wrong_method_name) #=> nil
-
is_any?
Returns true if object is one of the passed classes
{}.is_any?(Array, Hash, Class) #=> true "".is_any?(Array) #=> false
-
hour_to_float
"14:30".hour_to_float #=> 14.5
-
float?
"123.456".float? #=> true
-
Statistics
This module is intended to provide basic statistic functionnalities to numeric arrays. You may either call [].to_stats or extend an existing array with Utilities::Statistics module.
-
sum
[1,2,3].sum #=> 6
-
squares
[1,2,3].squares #=> [1,4,9]
-
sqrts
[9,16,25].sqrts #=> [3,4,5]
-
mean
[1,2,3,4,5].mean #=> 3
-
frequences
[1,1,2,3,3,3,4].frequences #=> {1=>2, 2=>1, 3=>3, 4=>1}
-
modes
[1,2,3,3,4,4,4,5].modes #=> {4=>3}
-
statistics
[1,2,3,4,5].statistics #=> { :first=>1, :last=>5, :size=>5, :sum=>15, :squares=>[1, 4, 9, 16, 25], :sqrts=>[1.0, 1.4142135623730951, 1.7320508075688772, 2.0, 2.23606797749979], :min=>1, :max=>5, :mean=>3.0, :frequences=>{1=>1, 2=>1, 3=>1, 4=>1, 5=>1}, :variance=>2.5, :standard_deviation=>1.5811388300841898, :population_variance=>2.0, :population_standard_deviation=>1.4142135623730951, :modes=>{1=>1, 2=>1, 3=>1, 4=>1, 5=>1}, :ranks=>[0.0, 1.0, 2.0, 3.0, 4.0], :median=>3, :midrange=>3.0, :statistical_range=>4, :quartiles=>[1.5, 3, 4.5], :interquartile_range=>3.0 }
-