/cs224w

Primary LanguagePython

The Study of Drug-Drug Interaction Learning Through Various Graph Learning Methods

Setup:

0: Install cuda driver like CUDA Toolkit 10.2

Install instruction in Linux: 
wget https://developer.download.nvidia.com/compute/cuda/10.2/Prod/local_installers/cuda_10.2.89_440.33.01_linux.run
sudo sh cuda_10.2.89_440.33.01_linux.run

Update environment variable (you can add it into  ~/.bashrc): 
LD_LIBRARY_PATH="$LD_LIBRARY_PATH:/usr/local/cuda-10.2/lib64"
PATH="$PATH:/usr/local/cuda-10.2/bin"

1: Install from requirements.txt (using conda or pip install)

2: Install pytorch

On MAC or Linux, it's very simple:

pip install torch==1.6.0 

On Windows, please follow this link pytorch:
No CUDA To install PyTorch via pip, and do not have a CUDA-capable system or do not require CUDA, in the above selector, choose OS: Windows, Package: Pip and CUDA: None. Then, run the command that is presented to you.

With CUDA To install PyTorch via pip, and do have a CUDA-capable system, in the above selector, choose OS: Windows, Package: Pip and the CUDA version suited to your machine. Often, the latest CUDA version is better. Then, run the command that is presented to you.

3: Install pytorch-geometric

Ensure that at least PyTorch 1.4.0 is installed:

$ python -c "import torch; print(torch.__version__)"
>>> 1.6.0

Find the CUDA version PyTorch was installed with:

$ python -c "import torch; print(torch.version.cuda)"
>>> 10.2

Install the relevant packages:

pip install torch-scatter -f https://pytorch-geometric.com/whl/torch-${TORCH}+${CUDA}.html
pip install torch-sparse -f https://pytorch-geometric.com/whl/torch-${TORCH}+${CUDA}.html
pip install torch-cluster -f https://pytorch-geometric.com/whl/torch-${TORCH}+${CUDA}.html
pip install torch-spline-conv -f https://pytorch-geometric.com/whl/torch-${TORCH}+${CUDA}.html
pip install torch-geometric

where ${CUDA} and ${TORCH} should be replaced by your specific CUDA version (cpu, cu92, cu101, cu102, cu110) and PyTorch version (1.4.0, 1.5.0, 1.6.0, 1.7.0), respectively. For example, for PyTorch 1.7.0/1.7.1 and CUDA 11.0, type:

For example in my case, I have PyTorch 1.6.0 and CUDA 10.2, so I will install with following commands:

pip install torch-scatter -f https://pytorch-geometric.com/whl/torch-1.6.0+cu102.html
pip install torch-sparse -f https://pytorch-geometric.com/whl/torch-1.6.0+cu102.html
pip install torch-cluster -f https://pytorch-geometric.com/whl/torch-1.6.0+cu102.html
pip install torch-spline-conv -f https://pytorch-geometric.com/whl/torch-1.6.0+cu102.html
pip install torch-geometric

pytorch-geometric Reference

4: Install ogb

pip install ogb
python -c "import ogb; print(ogb.__version__)"
Note: This should print "1.2.6". Otherwise, please update the version by
pip install -U ogb

### Dataset ogbl-ddi:
  1. ```https://ogb.stanford.edu/docs/linkprop/#ogbl-ddi

Run commands with parameters (corresponding to the best runs only):

 1. python graphsage_augmented_node2vec.py --hidden_channels 512 --num_layers 2 --dropout 0.5 --lr 0.005 --batch_size 65536 --epoch 200 --runs 10
 2. python deepergcn_augmented.py --hidden_channels 64 --num_layers 2 --dropout 0.5 --lr 0.005 --batch_size 65536 --epoch 200 --runs 10 
 3. python gnn_augmented_node2vec_random.py --hidden_channels 512 --num_layers 2 --dropout 0.5 --lr 0.005 --batch_size 65536 --epoch 200 --runs 10 
 4. python gnn_augmented_node2vec_skip.py --hidden_channels 512 --num_layers 2 --dropout 0.55 --lr 0.005 --batch_size 65536 --epoch 200 --runs 10
 5. python gnn_augmented_node2vec.py --hidden_channels 1024 --num_layers 2 --dropout 0.5 --lr 0.005 --batch_size 65536 --epoch 200 --runs 10 

Reference performance for OGB:

Best Runs

Model (command) Test Hits@20 (%) Validation Hits@20(%) Parameters Hardware
MAD Learning (baseline) 67.81 ± 2.94 70.10 ± 0.82 1,228,897 Geforce GTX 1080 Ti (11GB GPU)
LRGA + GCN (baseline) 62.30 ± 9.12 66.75 ± 0.58 1,576,081 Tesla P100 (16GB GPU)
LRGA + GraphSage + Node2Vec (1) 61.23 ± 13.62 68.27 ± 0.96 Tesla V100 (32GB)
Deeper GCN Augment (2) 31.52 ± 8.27 56.92 ± 1.33 319,555 Tesla V100 (32GB)
LRGA + GCN Aug + Node2Vec + RNN (3) 70.66 ± 5.88 69.58 ± 0.90 3,807,121 Tesla V100 (32GB)
LRGA + GCN Aug + Node2Vec:SkipConnect (4) 65.91 ± 11.22 71.66 ± 1.38 3,126,985 Tesla V100 (32GB)
LRGA + GCN Aug + Node2Vec (5) 73.85 ± 8.71 72.25 ± 0.47 10,235,281 Tesla V100 (32GB)

All Runs

Model Test Hits@20 (%) Validation Hits@20(%) Parameters Hardware
MAD Learning (baseline) 67.81 ± 2.94 70.10 ± 0.82 1,228,897 Geforce GTX 1080 Ti (11GB GPU)
LRGA + GCN (baseline) 62.30 ± 9.12 66.75 ± 0.58 1,576,081 Tesla P100 (16GB GPU)
LRGA + GraphSage + Node2Vec 61.23 ± 13.62 68.27 ± 0.96 Tesla V100 (32GB)
Deeper GCN Augment 31.52 ± 8.27 56.92 ± 1.33 319,555 Tesla V100 (32GB)
LRGA + GCN Aug 55.08 ± 13.44 66.03 ± 2.48 1,576,081 Tesla V100 (32GB)
LRGA + GCN Aug 66.55 ± 8.70 69.85 ± 0.60 3,807,121 Tesla V100 (32GB)
LRGA + GCN Aug + Node2Vec + RNN 70.66 ± 5.88 69.58 ± 0.90 3,807,121 Tesla V100 (32GB)
LRGA + GCN Aug + Node2Vec:SkipConnect 65.33 ± 8.21 71.19 ± 0.57 3,126,985 Tesla V100 (32GB)
LRGA + GCN Aug + Node2Vec:SkipConnect 65.91 ± 11.22 71.66 ± 1.38 3,126,985 Tesla V100 (32GB)
LRGA + GCN Aug + Node2Vec:SkipConnect 69.61 ± 04.39 70.51 ± 1.00 3,126,985 Tesla V100 (32GB)
LRGA + GCN Aug + Node2Vec:SkipConnect 68.74 ± 6.47 70.46 ± 1.42 3,126,985 Tesla V100 (32GB)
LRGA + GCN Aug + Node2Vec:SkipConnect 23.34 ± 24.69 68.85 ± 0.65 4,749,913 Tesla V100 (32GB)
LRGA + GCN Aug + Node2Vec 56.22 ± 10.15 65.52 ± 0.87 1,576,081 Tesla V100 (32GB)
LRGA + GCN Aug + Node2Vec 60.80 ± 10.45 67.28 ± 0.74 3,807,121 Tesla V100 (32GB)
LRGA + GCN Aug + Node2Vec 73.41 ± 7.15 70.13 ± 0.50 3,807,121 Tesla V100 (32GB)
LRGA + GCN Aug + Node2Vec 65.91 ± 10.11 70.98 ±0.65 3,807,121 Tesla V100 (32GB)
LRGA + GCN Aug + Node2Vec 67.96 ± 10.41 71.33 ± 0.52 3,807,121 Tesla V100 (32GB)
LRGA + GCN Aug + Node2Vec 62.69 ± 5.65 67.28 ± 2.10 3,807,121 Tesla V100 (32GB)
LRGA + GCN Aug + Node2Vec 45.18 ± 14.67 62.29 ± 6.09 4,749,913 Tesla V100 (32GB)
LRGA + GCN Aug + Node2Vec 72.91 ± 5.07 70.62 ± 1.01 3,807,121 Tesla V100 (32GB)
LRGA + GCN Aug + Node2Vec 50.33 ± 13.37 67.52 ± 0.75 3,126,985 Tesla V100 (32GB)
LRGA + GCN Aug + Node2Vec 50.33 ± 13.37 67.52 ± 0.75 3,126,985 Tesla V100 (32GB)
LRGA + GCN Aug + Node2Vec 64.48 ± 14.18 65.32 ± 5.56 4,749,913 Tesla V100 (32GB)
LRGA + GCN Aug + Node2Vec 73.41 ± 7.15 70.13 ± 0.50 3,807,121 Tesla V100 (32GB)
LRGA + GCN Aug + Node2Vec 73.51 ± 8.69 70.55 ± 0.31 5,168,401 Tesla V100 (32GB)
LRGA + GCN Aug + Node2Vec 74.24 ± 14.18 71.54 ± 0.61 6,693,521 Tesla V100 (32GB)
LRGA + GCN Aug + Node2Vec 73.13 ± 13.79 71.73 ± 0.65 7,100,401 Tesla V100 (32GB)
LRGA + GCN Aug + Node2Vec 77.94 ± 9.20 71.81 ± 0.73 7,517,521 Tesla V100 (32GB)
LRGA + GCN Aug + Node2Vec 74.17 ± 13.97 72.03 ± 0.59 8,382,481 Tesla V100 (32GB)
LRGA + GCN Aug + Node2Vec 75.88 ± 10.28 71.65 ± 0.53 9,288,401 Tesla V100 (32GB)
LRGA + GCN Aug + Node2Vec 73.85 ± 8.71 72.25 ± 0.47 10,235,281 Tesla V100 (32GB)
LRGA + GCN Aug + Node2Vec 66.07 ± 20.60 70.97 ± 2.76 12,251,921 Tesla V100 (32GB)

Reference:

  1. AGE: baseline implementation of AGE network

  2. ddi: how to load ddi dataset for link prediction tasks

  3. DeeperGCN: example implementation of DeeperGCN

  4. LRGA: GLOBAL ATTENTION IMPROVES GRAPH NETWORKS GENERALIZATION