from nlu.error import *
from nlu.parser import *
cols_format = [{'type': 'predict', 'col_num': 1, 'tagger': 'ner'},
{'type': 'gold', 'col_num': 2, 'tagger': 'ner'}]
parser = ConllParser('testb.pred.gold', cols_format)
parser.obtain_statistics(entity_stat=True, source='predict')
parser.obtain_statistics(entity_stat=True, source='gold')
parser.set_entity_mentions()
NERErrorAnnotator.annotate(parser)
parser.print_corrects()
parser.print_all_errors()
parser.error_overall_stats()
see the section Input Format below to know what the input format is
from nlu.error import *
from nlu.parser import *
Create a ConllParser
instance first with the input of the file path with specifying the column number in cols_format
field
ConllParser(filepath)
cols_format = [{'type': 'predict', 'col_num': 1, 'tagger': 'ner'},
{'type': 'gold', 'col_num': 2, 'tagger': 'ner'}]
parser = ConllParser('testb.pred.gold', cols_format)
parser.obtain_statistics(entity_stat=True, source='predict')
parser.obtain_statistics(entity_stat=True, source='gold')
NERErrorAnnotator.annotate(parser)
parser.print_corrects()
or
parser.print_all_errors()
or use the function error_overall_stats()
method to get the stats
The input file format of ConllParser
is following the column format used by Conll03.
For example,
Natural I-ORG O
Language I-ORG O
Laboratory I-ORG I-ORG
...
where the first column is the text, the second and the third are the predicted and the ground truth tag respectively, where the order can be specified in the keyword cols_format
in ConllParser
in instantialization:
cols_format = [{'type': 'predict', 'col_num': 1, 'tagger': 'ner'},
{'type': 'gold', 'col_num': 2, 'tagger': 'ner'}] # col_num starts from 0
I recommend to use shell command awk '{print $x}' filepath
to obtain the x-th column, like awk '{print $4} filepath'
to obtain the 4-th column.
And use paste file1.txt file2.txt
to concatenate two files.
For example,
awk '{print $4}' eng.train > ner_tags_file # $num starts from 1
paste ner_pred_tags_file ner_tags_file
Types | Number of Mentions (Predicted and Gold) | Subtypes | Examples | Notes |
---|---|---|---|---|
Missing Mention (False Negative) |
1 | TYPES→O | [] → None | |
Extra Mention (False Positive) |
1 | O→TYPES | None → [...] | |
Mention with Wrong Type (Type Errors) |
≥ 2 | TYPES-> TYPES - self ( {(p, g) | p ∈ T, g ∈ T - p } ) |
[PER...] → [ORG...] # todo | But the spans are the same |
Missing Tokens | 2 | L/ R/ LR Diminished | [MISC1991 World Cup] → [MISC1991] [MISC World Cup] | also possible with type errors |
Extra Tokens | 2 | L/R/LR Expanded | [...] → [......] | also possible with type errors |
Missing + Extra Tokens | 2 | L/R Crossed | ..[...].. → .[..]... | also possible with type errors |
Conflated Mention | ≥ 3 | [][][] → [] | also possible with type errors | |
Divided Mention | ≥ 3 | [MISC1991 World Cup] → [MISC1991] [MISC World Cup] [PERBarack Hussein Obama] → [PERBarack][PERHussein][PERObama] |
also possible with type errors | |
Complicated Case | ≥ 3 | [][][] → [][] | also possible with type errors | |
Ex - Mention with Wrong Segmentation (Same overall range but wrong segmentation) |
≥ 4 | [...][......][.] → [......][.....] | also possible with type errors |