Everybody likes multiple dispatch, just like everybody likes plums.
Plum requires Python 3.6 or higher.
pip install plum-dispatch
Multiple dispatch allows you to implement multiple methods for the same function, where the methods specify the types of their arguments:
from plum import dispatch
@dispatch
def f(x: str):
return "This is a string!"
@dispatch
def f(x: int):
return "This is an integer!"
>>> f("1")
'This is a string!'
>>> f(1)
'This is an integer!'
We haven't implemented a method for float
s, so in that case an exception
will be raised:
>>> f(1.0)
NotFoundLookupError: For function "f", signature (builtins.float) could not be resolved.
Instead of implementing a method for float
s, let's implement a method for
all numbers:
from numbers import Number
@dispatch
def f(x: Number):
return "This is a number!"
Since a float
is a Number
, f(1.0)
will return "This is a number!"
.
But an int
is also a Number
, so f(1)
can either return
"This is an integer!"
or "This is a number!"
.
The rule of multiple dispatch is that the most specific method is chosen:
>>> f(1)
'This is an integer!'
since an int
is a Number
, but a Number
is not necessarily an int
.
For an excellent and way more detailed overview of multiple dispatch, see the manual of the Julia Language.
Sets can be used to instantiate union types:
from plum import dispatch
@dispatch
def f(x):
print("fallback")
@dispatch
def f(x: {int, str}):
print("int or str")
>>> f(1)
int or str
>>> f("1")
int or str
>>> f(1.0)
fallback
The parametric types Tuple
and List
can be used to dispatch on tuples
and lists with particular types of elements.
Importantly, the type system is covariant, as opposed to Julia's type
system, which is invariant.
from typing import Tuple, List
from plum import dispatch
@dispatch
def f(x: {tuple, list}):
print("tuple or list")
@dispatch
def f(x: Tuple[int]):
print("tuple of int")
@dispatch
def f(x: List[int]):
print("list of int")
>>> f([1, 2])
'list of int'
>>> f([1, "2"])
'tuple or list'
>>> f((1, 2))
'tuple of int'
>>> f((1, "2"))
'tuple or list'
A variable number of arguments can be used without any problem.
from plum import dispatch
@dispatch
def f(x: int):
print("single argument")
@dispatch
def f(x: int, *xs: int):
print("multiple arguments")
>>> f(1)
single argument
>>> f(1, 2)
multiple arguments
>>> f(1, 2, 3)
multiple arguments
Return types can be used without any problem.
from plum import dispatch, add_conversion_method
@dispatch
def f(x: {int, str}) -> int:
return x
>>> f(1)
1
>>> f("1")
TypeError: Cannot convert a "builtins.str" to a "builtins.int".
>>> add_conversion_method(type_from=str, type_to=int, f=int)
>>> f("1")
1
Since every class in Python can be subclassed, diagonal dispatch cannot be implemented. However, inheritance can be used to achieve a form of diagonal dispatch:
from plum import Dispatcher, Referentiable, Self
class Real(metaclass=Referentiable):
dispatch = Dispatcher(in_class=Self)
@dispatch
def __add__(self, other: Self):
return "real"
class Rational(Real):
dispatch = Dispatcher(in_class=Self)
@dispatch
def __add__(self, other: Self):
return "rational"
real = Real()
rational = Rational()
>>> real + real
'real'
>>> real + rational
'real'
>>> rational + real
'real'
>>> rational + rational
'rational'
The function convert
can be used to convert objects of one type to another:
from numbers import Number
from plum import convert
class Rational:
def __init__(self, num, denom):
self.num = num
self.denom = denom
>>> convert(0.5, Number)
0.5
>>> convert(Rational(1, 2), Number)
TypeError: Cannot convert a "__main__.Rational" to a "numbers.Number".
The TypeError
indicates that convert
does not know how to convert a
Rational
to a Number
.
Let us implement that conversion:
from operator import truediv
from plum import conversion_method
@conversion_method(type_from=Rational, type_to=Number)
def rational_to_number(q):
return truediv(q.num, q.denom)
>>> convert(Rational(1, 2), Number)
0.5
Instead of the decorator conversion_method
, one can also use
add_conversion_method
:
from plum import add_conversion_method
add_conversion_method(type_from, type_to, conversion_function)
The function promote
can be used to promote objects to a common type:
from plum import dispatch, promote, add_promotion_rule, add_conversion_method
@dispatch
def add(x, y):
return add(*promote(x, y))
@dispatch
def add(x: int, y: int):
return x + y
@dispatch
def add(x: float, y: float):
return x + y
>>> add(1, 2)
3
>>> add(1.0, 2.0)
3.0
>>> add(1, 2.0)
TypeError: No promotion rule for "builtins.int" and "builtins.float".
>>> add_promotion_rule(int, float, float)
>>> add(1, 2.0)
TypeError: Cannot convert a "builtins.int" to a "builtins.float".
>>> add_conversion_method(type_from=int, type_to=float, f=float)
>>> add(1, 2.0)
3.0
The keyword argument precedence
can be set to an integer value to specify
precedence levels of methods, which are used to break ambiguity:
from plum import dispatch
class Element:
pass
class ZeroElement(Element):
pass
class SpecialisedElement(Element):
pass
@dispatch
def mul_no_precedence(a: ZeroElement, b: Element):
return "zero"
@dispatch
def mul_no_precedence(a: Element, b: SpecialisedElement):
return "specialised operation"
@dispatch(precedence=1)
def mul(a: ZeroElement, b: Element):
return "zero"
@dispatch
def mul(a: Element, b: SpecialisedElement):
return "specialised operation"
>>> zero = ZeroElement()
>>> specialised_element = SpecialisedElement()
>>> element = Element()
>>> mul(zero, element)
'zero'
>>> mul(element, specialised_element)
'specialised operation'
>>> mul_no_precedence(zero, specialised_element)
AmbiguousLookupError: For function "mul_no_precedence", signature (__main__.ZeroElement, __main__.SpecialisedElement) is ambiguous among the following:
(__main__.ZeroElement, __main__.Element) (precedence: 0)
(__main__.Element, __main__.SpecialisedElement) (precedence: 0)
>>> mul(zero, specialised_element)
'zero'
The decorator parametric
can be used to create parametric classes:
from plum import dispatch, parametric
@parametric
class A:
pass
@dispatch(A)
def f(x: A):
return "fallback"
@dispatch(A[1])
def f(x):
return "1"
@dispatch(A[2])
def f(x):
return "2"
>>> A
__main__.A
>>> A[1]
__main__.A[1]
>>> issubclass(A[1], A)
True
>>> A[1]()
<__main__.A[1] at 0x10c2bab70>
>>> f(A[1]())
'1'
>>> f(A[2]())
'2'
>>> f(A[3]())
'fallback'
Dispatcher.multi
can be used to implement multiple methods at once:
from plum import dispatch
@dispatch.multi((int, int), (float, float))
def add(x: {int, float}, y: {int, float}):
return x + y
>>> add(1, 1)
2
>>> add(1.0, 1.0)
2.0
>>> add(1, 1.0)
NotFoundLookupError: For function "add", signature (builtins.int, builtins.float) could not be resolved.
Function.extend
can be used to extend a particular function:
from package import f
@f.extend
def f(x: int):
return "new behaviour"
>>> f(1.0)
'old behaviour'
>>> f(1)
'new behaviour'
Function.invoke
can be used to invoke a method given types of the arguments:
from plum import dispatch
@dispatch
def f(x: int):
return "int"
@dispatch
def f(x: str):
return "str"
>>> f(1)
'int'
>>> f("1")
'str'
>>> f.invoke(int)("1")
'int'
>>> f.invoke(str)(1)
'str'