A Python implementation of body-pix.
Goals of this project is:
- Python library, making it easy to integrate the BodyPix model
- CLI with limited functionality, mostly for demonstration purpose
Install with all dependencies:
pip install tf-bodypix[all]
Install with minimal or no dependencies:
pip install tf-bodypix
Extras are provided to make it easier to provide or exclude dependencies when using this project as a library:
extra name | description |
---|---|
tf | TensorFlow (required). But you may use your own build. |
tfjs | TensorFlow JS Model support, using tfjs-graph-converter |
image | Image loading via Pillow, required by the CLI. |
video | Video support via OpenCV |
webcam | Webcam support via OpenCV and pyfakewebcam |
all | All of the libraries |
from pathlib import Path
import tensorflow as tf
from tf_bodypix.api import download_model, load_model, BodyPixModelPaths
# setup input and output paths
output_path = Path('./data/example-output')
output_path.mkdir(parents=True, exist_ok=True)
input_url = (
'https://www.dropbox.com/s/7tsaqgdp149d8aj/serious-black-businesswoman-sitting-at-desk-in-office-5669603.jpg?dl=1'
)
local_input_path = tf.keras.utils.get_file(origin=input_url)
# load model (once)
bodypix_model = load_model(download_model(
BodyPixModelPaths.MOBILENET_FLOAT_50_STRIDE_16
))
# get prediction result
image = tf.keras.preprocessing.image.load_img(local_input_path)
image_array = tf.keras.preprocessing.image.img_to_array(image)
result = bodypix_model.predict_single(image_array)
# simple mask
mask = result.get_mask(threshold=0.75)
tf.keras.preprocessing.image.save_img(
f'{output_path}/output-mask.jpg',
mask
)
# colored mask (separate colour for each body part)
colored_mask = result.get_colored_part_mask(mask)
tf.keras.preprocessing.image.save_img(
f'{output_path}/output-colored-mask.jpg',
colored_mask
)
# poses
from tf_bodypix.draw import draw_poses # utility function using OpenCV
poses = result.get_poses()
image_with_poses = draw_poses(
image_array.copy(), # create a copy to ensure we are not modifing the source image
poses,
keypoints_color=(255, 100, 100),
skeleton_color=(100, 100, 255)
)
tf.keras.preprocessing.image.save_img(
f'{output_path}/output-poses.jpg',
image_with_poses
)
python -m tf_bodypix --help
or
python -m tf_bodypix <sub command> --help
python -m tf_bodypix list-models
The result will be a list of all of the bodypix
TensorFlow JS models available in the tfjs-models bucket.
Those URLs can be passed as the --model-path
arguments below, or to the download_model
method of the Python API.
The CLI will download and cache the model from the provided path. If no --model-path
is provided, it will use a default model (mobilenet).
Most commands will work with inputs (source) and outputs.
The source path can be specified via the --source
parameter.
The following inputs are supported:
type | description |
---|---|
image | Static image (e.g. .png ) |
video | Video (e.g. .mp4 ) |
webcam | Linux Webcam (/dev/videoN or webcam:0 ) |
If the source path points to an external file (e.g. https://
), then it will be downloaded and locally cached.
The output path can be specified via --output
, unless --show-output
is used.
The following outpus are supported:
type | description |
---|---|
image_writer | Write to a static image (e.g. .png ) |
v4l2 | Linux Virtual Webcam (/dev/videoN ) |
window | Display a window (by using --show-output ) |
python -m tf_bodypix \
draw-mask \
--source \
"https://www.dropbox.com/s/7tsaqgdp149d8aj/serious-black-businesswoman-sitting-at-desk-in-office-5669603.jpg?dl=1" \
--show-output \
--threshold=0.75
Image Source: Serious black businesswoman sitting at desk in office
python -m tf_bodypix \
draw-mask \
--source \
"https://www.dropbox.com/s/7tsaqgdp149d8aj/serious-black-businesswoman-sitting-at-desk-in-office-5669603.jpg?dl=1" \
--show-output \
--threshold=0.75 \
--mask-alpha=0.5
Image Source: Serious black businesswoman sitting at desk in office
python -m tf_bodypix \
draw-mask \
--source \
"https://www.dropbox.com/s/7tsaqgdp149d8aj/serious-black-businesswoman-sitting-at-desk-in-office-5669603.jpg?dl=1" \
--show-output \
--threshold=0.75 \
--mask-alpha=0.5 \
--colored
Image Source: Serious black businesswoman sitting at desk in office
python -m tf_bodypix \
draw-mask \
--source \
"https://www.dropbox.com/s/7tsaqgdp149d8aj/serious-black-businesswoman-sitting-at-desk-in-office-5669603.jpg?dl=1" \
--show-output \
--threshold=0.75 \
--mask-alpha=0.5 \
--parts left_face right_face \
--colored
Image Source: Serious black businesswoman sitting at desk in office
python -m tf_bodypix \
draw-mask \
--source \
"https://www.dropbox.com/s/s7jga3f0dreavlb/video-of-a-man-laughing-and-happy-1608393-360p.mp4?dl=1" \
--show-output \
--threshold=0.75 \
--mask-alpha=0.5 \
--colored
Video Source: Video Of A Man Laughing And Happy
python -m tf_bodypix \
draw-pose \
--source \
"https://www.dropbox.com/s/pv5v8dkpj5wung7/an-old-man-doing-a-tai-chi-exercise-2882799-360p.mp4?dl=1" \
--show-output \
--threshold=0.75
python -m tf_bodypix \
blur-background \
--source \
"https://www.dropbox.com/s/s7jga3f0dreavlb/video-of-a-man-laughing-and-happy-1608393-360p.mp4?dl=1" \
--show-output \
--threshold=0.75 \
--mask-blur=5 \
--background-blur=20
Video Source: Video Of A Man Laughing And Happy
python -m tf_bodypix \
replace-background \
--source \
"https://www.dropbox.com/s/s7jga3f0dreavlb/video-of-a-man-laughing-and-happy-1608393-360p.mp4?dl=1" \
--background \
"https://www.dropbox.com/s/b22ss59j6pp83zy/brown-landscape-under-grey-sky-3244513.jpg?dl=1" \
--show-output \
--threshold=0.75 \
--mask-blur=5
Video Source: Video Of A Man Laughing And Happy
Background: Brown Landscape Under Grey Sky
python -m tf_bodypix \
draw-mask \
--source webcam:0 \
--show-output \
--threshold=0.75 \
--mask-alpha=0.5 \
--colored
(replace /dev/videoN
with the actual virtual video device)
python -m tf_bodypix \
draw-mask \
--source webcam:0 \
--output /dev/videoN \
--threshold=0.75 \
--mask-alpha=0.5 \
--colored
(replace /dev/videoN
with the actual virtual video device)
python -m tf_bodypix \
blur-background \
--source webcam:0 \
--background-blur 20 \
--output /dev/videoN \
--threshold=0.75
(replace /dev/videoN
with the actual virtual video device)
python -m tf_bodypix \
replace-background \
--source webcam:0 \
--background \
"https://www.dropbox.com/s/b22ss59j6pp83zy/brown-landscape-under-grey-sky-3244513.jpg?dl=1" \
--threshold=0.75 \
--output /dev/videoN
Background: Brown Landscape Under Grey Sky
The model path may also point to a TensorFlow Lite model (.tflite
extension). Whether that actually improves performance may depend on the platform and available hardware.
You could convert one of the available TensorFlow JS models to TensorFlow Lite using the following command:
python -m tf_bodypix \
convert-to-tflite \
--model-path \
"https://storage.googleapis.com/tfjs-models/savedmodel/bodypix/mobilenet/float/075/model-stride16.json" \
--optimize \
--quantization-type=float16 \
--output-model-file "./mobilenet-float16-stride16.tflite"
The above command is provided for convenience. You may use alternative methods depending on your preference and requirements.
Relevant links:
You could also use the Docker image if you prefer.
The entrypoint will by default delegate to the CLI, except for python
or bash
commands.
# pull latest image (you may also use tags)
docker pull de4code/tf-bodypix
# mount real and virtual webcam devices on linux
docker run --rm \
--device /dev/video0 \
--device /dev/video2 \
de4code/tf-bodypix \
blur-background \
--source /dev/video0 \
--output /dev/video2 \
--background-blur 20 \
--threshold=0.75
# mount x11 display on linux
docker run --rm \
--net=host \
--volume /tmp/.X11-unix:/tmp/.X11-unix \
--volume ${HOME}/.Xauthority:/root/.Xauthority \
--env DISPLAY \
de4code/tf-bodypix \
replace-background \
--source \
"https://www.dropbox.com/s/s7jga3f0dreavlb/video-of-a-man-laughing-and-happy-1608393-360p.mp4?dl=1" \
--background \
"https://www.dropbox.com/s/b22ss59j6pp83zy/brown-landscape-under-grey-sky-3244513.jpg?dl=1" \
--show-output \
--threshold=0.75 \
--mask-blur=5
Here are a few example media files you could try.
Images:
- Serious black businesswoman sitting at desk in office (Source)
- Woman Wearing Gray Notch Lapel Suit Jacket (Source)
- Smiling Woman Standing In Front Of A Colorful Flag (Source)
- Man and Woman Smiling Inside Building (Source)
- Two Woman in Black Sits on Chair Near Table (Source)
- Female barista in beanie and apron resting chin on had (Source)
- Smiling Woman Holding White Android Smartphone While Sitting Front of Table (Source)
- Woman Having Coffee and Rice Bowl (Source)
- Woman Smiling While Holding a Coffee Cup (Source)
Videos:
- Video Of A Man Laughing And Happy (Source)
- A Group Of People In A Business Meeting (Source)
- An Old Man Doing A Tai Chi Exercise (Source)
Background:
- Layered Vision is an experimental project using the
tf-bodypix
Python API.
- Original TensorFlow JS Implementation of BodyPix
- Linux-Fake-Background-Webcam, an implementation of the blog post describing using the TensorFlow JS implementation with Python via a Socket API.
- tfjs-to-tf for providing an easy way to convert TensorFlow JS models
- virtual_webcam_background for a great pure Python implementation