unofficial re-implementation of popular tissue image segmentation models
Support Model:
- UNet
- Dist
- DCAN
- MicroNet
- FullNet
- CDNet
Please check this doc
Supported Dataset:
- MoNuSeg;
- CoNSeP;
- CPM17;
- CoNIC;
- Install MMCV-full (Linux recommend):
pip install MMCV-full==1.3.13
; - Install requirements package:
pip install -r requirements.txt
; - Download tiseg:
git clone https://github.com/sennnnn/Torch-Image-Segmentation
; - Install tiseg:
pip install -e .
;
# single gpu training
python tools/train.py [config_path]
# multiple gpu training
./tools/dist_train.sh [config_path] [num_gpu]
# demo (cdnet for CPM17 dataset on 1 gpu)
python tools/train.py configs/unet/unet_vgg16_radam-lr5e-4_bs16_256x256_7k_cpm17.py
# demo (unet for CPM17 dataset on 4 gpu)
./tools/dist_train.py configs/unet/unet_vgg16_radam-lr5e-4_bs16_256x256_7k_cpm17.py 4
# single gpu evaluation
python tools/test.py [config_path]
# multiple gpu evaluation
./tools/dist_test.py [config_path] [num_gpu]
This repo follow the design mode of mmsegmentation & detectron2.