NOTE: This used to be a gist that continually expanded. It's now a github project because it's considerably easier for other people to edit, fix and expand on Docker using Github. Just click README.md, and then on the "writing pen" icon on the right to edit.
- Why
- I just want a dev environment
- Prerequisites
- Installation
- Containers
- Images
- Registry and Repository
- Dockerfile
- Layers
- Links
- Volumes
- Exposing Ports
- Best Practices
- Tips
"With Docker, developers can build any app in any language using any toolchain. “Dockerized” apps are completely portable and can run anywhere - colleagues’ OS X and Windows laptops, QA servers running Ubuntu in the cloud, and production data center VMs running Red Hat.
Developers can get going quickly by starting with one of the 13,000+ apps available on Docker Hub. Docker manages and tracks changes and dependencies, making it easier for sysadmins to understand how the apps that developers build work. And with Docker Hub, developers can automate their build pipeline and share artifacts with collaborators through public or private repositories.
Docker helps developers build and ship higher-quality applications, faster." -- What is Docker
- A Docker Dev Environment in 24 Hours!
- Building a Development Environment With Docker
- Discourse in a Docker Container
You may also like to try the following tools (and add more details here after you try them):
I use Oh My Zsh with the Docker plugin for autocompletion of docker commands. YMMV.
You should have at least a 3.8 kernel, but 3.10.x is recommended.
Use Homebrew.
ruby -e "$(curl -fsSL https://raw.github.com/mxcl/homebrew/go)"
Quick and easy install script provided by Docker:
curl -sSL https://get.docker.com/ | sh
Download Docker for OSX from the Github Releases page.
The canonical way to use Docker is with the aid of the boot2docker VM. However, using the out of the box boot2docker doesn't give me control over my Vagrant instances (especially the lack of port forwarding). So here's how to use boot2docker from a Vagrant instance.
We use the YungSang modified boot2docker instance from the Vagrant Cloud -- this opens up port forwarding to the network, so is not safe on public wifi:
mkdir ~/boot2docker
cd ~/boot2docker
vagrant init yungsang/boot2docker
vagrant up
export DOCKER_HOST=tcp://localhost:2375
docker version
Then start up a container:
docker run -i -t ubuntu /bin/bash
That's it, you have a running Docker container.
Your basic isolated Docker process. Containers are to Virtual Machines as threads are to processes. Or you can think of them as chroots on steroids.
Some common misconceptions it's worth correcting:
- Containers are not transient.
docker run
doesn't do what you think. - Containers are not limited to running a single command or process. You can use supervisord or runit.
docker create
creates a container but does not start it.docker run
creates and starts a container in one operation.docker stop
stops it.docker start
will start it again.docker restart
restarts a container.docker rm
deletes a container.docker kill
sends a SIGKILL to a container.docker attach
will connect to a running container.docker wait
blocks until container stops.
If you want to run and then interact with a container, docker start
then docker attach
to get in (or, as of 0.9, nsenter
).
If you want a transient container, docker run --rm
will remove the container after it stops.
If you want to poke around in an image, docker run -t -i <myimage> <myshell>
to open a tty.
If you want to map a directory on the host to a docker container, docker run -v $HOSTDIR:$DOCKERDIR
. Also see Volumes.
If you want to integrate a container with a host process manager, start the daemon with -r=false
then use docker start -a
.
If you want to expose container ports through the host, see the exposing ports section.
docker ps
shows running containers.docker inspect
looks at all the info on a container (including IP address).docker logs
gets logs from container.docker events
gets events from container.docker port
shows public facing port of container.docker top
shows running processes in container.docker diff
shows changed files in the container's FS.
docker ps -a
shows running and stopped containers.
There doesn't seem to be a way to use docker directly to import files into a container's filesystem. The closest thing is to mount a host file or directory as a data volume and copy it from inside the container.
docker cp
copies files or folders out of a container's filesystem.docker export
turns container filesystem into tarball.
From Docker v.1.3 it is possible to inject a new processes to a running container using docker-exec. To enter a running container just attach a new shell process to a running container called foo, use: docker exec -it foo /bin/bash
.
Prior to v.1.3, the "official" way to enter a docker container while it's running is to use nsenter
, which uses libcontainer under the hood. Using an sshd
daemon is considered evil.
Unfortunately, nsenter requires some configuration and installation. If your operating system does not include nsenter (usually in a package named util-linux or similar, although it has to be quite a recent version), the easiest way is probably to install it through docker, as described in the first of the following links:
- Installing nsenter using docker
- How to enter a Docker container
- Docker debug with nsenter on boot2docker
nsenter
allows you to run any command (e.g. a shell) inside a container that's already running another command (e.g. your database or webserver). This allows you to see all mounted volumes, check on processes, log files etc. inside a running container.
The first installation method described above also installs a small wrapper script wrapping nsenter
named docker-enter
that makes executing a shell inside a running container as easy as docker-enter CONTAINER
and any other command via docker-enter CONTAINER COMMAND
.
Images are just templates for docker containers.
docker images
shows all images.docker import
creates an image from a tarball.docker build
creates image from Dockerfile.docker commit
creates image from a container.docker rmi
removes an image.docker insert
inserts a file from URL into image. (kind of odd, you'd think images would be immutable after create)docker load
loads an image from a tar archive as STDIN, including images and tags (as of 0.7).docker save
saves an image to a tar archive stream to STDOUT with all parent layers, tags & versions (as of 0.7).
docker history
shows history of image.docker tag
tags an image to a name (local or registry).
A repository is a hosted collection of tagged images that together create the file system for a container.
A registry is a host -- a server that stores repositories and provides an HTTP API for managing the uploading and downloading of repositories.
Docker.io hosts its own index to a central registry which contains a large number of repositories.
docker login
to login to a registry.docker search
searches registry for image.docker pull
pulls an image from registry to local machine.docker push
pushes an image to the registry from local machine.
The configuration file. Sets up a Docker container when you run docker build
on it. Vastly preferable to docker commit
.
Docker documentation: Best practices for writing Dockerfiles
Best to look at http://github.com/wsargent/docker-devenv and the best practices / take 2 for more details.
If you use jEdit, I've put up a syntax highlighting module for Dockerfile you can use.
The versioned filesystem in Docker is based on layers. They're like git commits or changesets for filesystems.
Links are how Docker containers talk to each other through TCP/IP ports. Linking into Redis and Atlassian show worked examples. You can also (in 0.11) resolve links by hostname.
NOTE: If you want containers to ONLY communicate with each other through links, start the docker daemon with -icc=false
to disable inter process communication.
If you have a container with the name CONTAINER (specified by docker run --name CONTAINER
) and in the Dockerfile, it has an exposed port:
EXPOSE 1337
Then if we create another container called LINKED like so:
docker run -d --link CONTAINER:ALIAS --name LINKED user/wordpress
Then the exposed ports and aliases of CONTAINER will show up in LINKED with the following environment variables:
$ALIAS_PORT_1337_TCP_PORT
$ALIAS_PORT_1337_TCP_ADDR
And you can connect to it that way.
To delete links, use docker rm --link
.
Docker volumes are free-floating filesystems. They don't have to be connected to a particular container.
Volumes are useful in situations where you can't use links (which are TCP/IP only). For instance, if you need to have two docker instances communicate by leaving stuff on the filesystem.
You can mount them in several docker containers at once, using docker run -volume-from
Because volumes are isolated filesystems, they are often used to store state from computations between transient containers. That is, you can have a stateless and transient container run from a recipe, blow it away, and then have a second instance of the transient container pick up from where the last one left off.
See advanced volumes for more details.
As of 1.3, you can map MacOS host directories as docker volumes through boot2docker:
docker run -v /Users/wsargent/myapp/src:/src
Exposing ports through the host container is fiddly but doable.
First expose the port in your Dockerfile:
EXPOSE <CONTAINERPORT>
Then map the container port to the host port (only using localhost interface):
docker run -p 127.0.0.1:$HOSTPORT:$CONTAINERPORT --name CONTAINER -t someimage
If you're running Docker in Virtualbox, you then need to forward the port there as well. It can be useful to define something in Vagrantfile to expose a range of ports so that you can dynamically map them:
Vagrant.configure(VAGRANTFILE_API_VERSION) do |config|
...
(49000..49900).each do |port|
config.vm.network :forwarded_port, :host => port, :guest => port
end
...
end
If you forget what you mapped the port to on the host container, use docker port
to show it:
docker port CONTAINER $CONTAINERPORT
Sources:
alias dl='docker ps -l -q'
docker run ubuntu echo hello world
docker commit `dl` helloworld
docker commit -run='{"Cmd":["postgres", "-too -many -opts"]}' `dl` postgres
docker inspect `dl` | grep IPAddress | cut -d '"' -f 4
or
wget http://stedolan.github.io/jq/download/source/jq-1.3.tar.gz
tar xzvf jq-1.3.tar.gz
cd jq-1.3
./configure && make && sudo make install
docker inspect `dl` | jq -r '.[0].NetworkSettings.IPAddress'
or (this is unverified)
docker inspect -f '{{ .NetworkSettings.IPAddress }}' <container_name>
docker inspect -f '{{range $p, $conf := .NetworkSettings.Ports}} {{$p}} -> {{(index $conf 0).HostPort}} {{end}}' <containername>
for i in $(docker ps -a | grep "REGEXP_PATTERN" | cut -f1 -d" "); do echo $i; done`
docker run --rm ubuntu env
docker kill $(docker ps -q)
docker ps -a | grep 'weeks ago' | awk '{print $1}' | xargs docker rm
docker images | grep "<none>" | awk '{print $3}' | xargs docker rmi
docker rm `docker ps -a -q`
docker rmi $(docker images -q -f dangling=true)
docker rmi $(docker images -q)
docker images -viz | dot -Tpng -o docker.png