This is a project for the 2023 study of the Sensorium research project. \ All copyrights belong to Sanghoon Lee, Ji-yeong Chae. \ For questions, please email leesh2913@dgist.ac.kr.
process raw file to int csv file
csv file is saved at data/x_data_ .csv and data/y_data_ .csv
save only frequency (0 ~ 5120hz data)
data name is data/x_data_00.csv, data/y_data_00.csv
frequency (0 ~ 5120hz data) + Pipe info (p pd s type data) data name is data/x_data_01.csv, data/y_data_01.csv
import train
trainer = train.train(name)
name is the file name of /data folder example: "00", "01"
params = {'n_neighbors': [5, 15, 30, 100], 'weights': ['uniform', 'distance'],
'algorithm': ['auto', 'ball_tree', 'kd_tree', 'brute']}
trainer.search_parameter("KNN", 3, param, "First test")
-
model_name is the name of ML methods
examples: "KNN", "MLP", "DNN", "GB", etc ... -
rand_seed is the seed of randome state examples: 0, 42, 1040, etc ...
-
parameter is the dictionary of parameter set examples:
params = { 'hidden_layer_sizes': [(50,), (100,), (150,)], 'activation': ['tanh', 'relu', 'logistic'], 'solver': ['adam'], 'alpha': [0.001, 0.01, 0.1] }
You can check the parameter settings in parameter_list.txt
-
name is the file name that you want to save examples: 0234
If model_name is MLP and name is "All" then
the result of GridSearchCV is saved at log/MLP_ALL.csv
Save the possible parameter list of any M.L methods.