《动手学大模型》系列编程实践教程,由上海交通大学《人工智能安全技术》课程讲义拓展而来(教师:张倬胜),旨在提供大模型相关的入门编程参考。通过简单实践,帮助同学快速入门大模型,更好地开展课程设计或学术研究。
Gitbook阅读体验更佳。
教程内容 | 简介 | 地址 |
---|---|---|
微调与部署 | 预训练模型微调与部署指南:想提升预训练模型在指定任务上的性能?让我们选择合适的预训练模型,在特定任务上进行微调,并将微调后的模型部署成方便使用的Demo! | [Slides] [Tutorial] |
提示学习与思维链 | 大模型的API调用与推理指南:“AI在线求鼓励?大模型对一些问题的回答令人大跌眼镜,但它可能只是想要一句「鼓励」” | [Slides] [Tutorial] |
知识编辑 | 语言模型的编辑方法和工具:想操控语言模型在对指定知识的记忆?让我们选择合适的编辑方法,对特定知识进行编辑,并将对编辑后的模型进行验证! | [Slides] [Tutorial] |
模型水印 | 语言模型的文本水印:在语言模型生成的内容中嵌入人类不可见的水印 | [Slides] [Tutorial] |
后门攻击 | TBD | TBD |
多模态模型 | TBD | TBD |
大模型智能体与安全 | 大模型智能体迈向了未来操作系统之旅。然而,大模型在开放智能体场景中能意识到风险威胁吗? | [Slides] [Tutorial] |
本教程所有内容仅仅来自于贡献者的个人经验、互联网数据、日常科研工作中的相关积累。所有技巧仅供参考,不保证百分百正确。若有任何问题,欢迎提交 Issue 或 PR。另本项目所用徽章来自互联网,如侵犯了您的图片版权请联系我们删除,谢谢。
本教程目前是一个正在进行中的项目,如有疏漏在所难免,欢迎任何的PR及issue讨论。
感谢以下同学对本项目的支持与贡献:
上海交通大学 袁童鑫
上海交通大学 马欣贝
上海交通大学 何志威