/brm

https://discourse.mc-stan.org/t/population-likelihood-interpretation-likelihood-of-total-likelihoods-of-both-parts/7161

Primary LanguageROtherNOASSERTION

brm confusion

suppressPackageStartupMessages(library(dplyr))

library(ggplot2)
library(dplyr)

source('./code/likelihood-ugly.R')   

  # grab data, 372 observations
  # "week", "transect", "time", "cluster", "totalSpiders"
  # 
  # (this dataframe was generated by the likelihood-ugly.R function generateLikelihoodV2() )
  #

source.url <- c("https://raw.githubusercontent.com/cordphelps/brm/master/data/clusterData.csv")
clusterData.df <- read.csv(source.url, header=TRUE, row.names=NULL)

How plausible is it that an oakMargin transect row will have more spiders than a control transect row?

#   plot likelihood for all observations (24 hours), for daylight observations (collected in the 'pm'), and 
#   for nighttime observations (collected in the 'am')
#

    gg.likelihood <- generateLikelihoodV2(df=clusterData.df, daytime='24h')
## Loading required package: Rcpp

## Loading 'brms' package (version 2.6.0). Useful instructions
## can be found by typing help('brms'). A more detailed introduction
## to the package is available through vignette('brms_overview').
## Run theme_set(theme_default()) to use the default bayesplot theme.

## Loading required package: StanHeaders

## rstan (Version 2.17.3, GitRev: 2e1f913d3ca3)

## For execution on a local, multicore CPU with excess RAM we recommend calling
## options(mc.cores = parallel::detectCores()).
## To avoid recompilation of unchanged Stan programs, we recommend calling
## rstan_options(auto_write = TRUE)

## Compiling the C++ model

## Start sampling

## Compiling the C++ model

## recompiling to avoid crashing R session

## Start sampling

## Compiling the C++ model

## recompiling to avoid crashing R session

## Start sampling

## Compiling the C++ model

## recompiling to avoid crashing R session

## Start sampling

## Compiling the C++ model

## recompiling to avoid crashing R session

## Start sampling

## Compiling the C++ model

## recompiling to avoid crashing R session

## Start sampling

## Compiling the C++ model

## recompiling to avoid crashing R session

## Start sampling

## Compiling the C++ model

## recompiling to avoid crashing R session

## Start sampling

## Compiling the C++ model

## recompiling to avoid crashing R session

## Start sampling

## 
## Attaching package: 'gridExtra'

## The following object is masked from 'package:dplyr':
## 
##     combine
    print(gg.likelihood)

    filtered.df <- clusterData.df %>% dplyr::filter(time == 'pm')
    gg.likelihood <- generateLikelihoodV2(df=filtered.df, daytime='pm')
## Loading 'brms' package (version 2.6.0). Useful instructions
## can be found by typing help('brms'). A more detailed introduction
## to the package is available through vignette('brms_overview').
## Run theme_set(theme_default()) to use the default bayesplot theme.

## rstan (Version 2.17.3, GitRev: 2e1f913d3ca3)

## For execution on a local, multicore CPU with excess RAM we recommend calling
## options(mc.cores = parallel::detectCores()).
## To avoid recompilation of unchanged Stan programs, we recommend calling
## rstan_options(auto_write = TRUE)

## Compiling the C++ model

## recompiling to avoid crashing R session

## Start sampling

## Compiling the C++ model

## recompiling to avoid crashing R session

## Start sampling

## Compiling the C++ model

## recompiling to avoid crashing R session

## Start sampling

## Compiling the C++ model

## recompiling to avoid crashing R session

## Start sampling

## Compiling the C++ model

## recompiling to avoid crashing R session

## Start sampling

## Compiling the C++ model

## recompiling to avoid crashing R session

## Start sampling

## Compiling the C++ model

## recompiling to avoid crashing R session

## Start sampling

## Compiling the C++ model

## recompiling to avoid crashing R session

## Start sampling

## Compiling the C++ model

## recompiling to avoid crashing R session

## Start sampling
    print(gg.likelihood) 

    filtered.df <- clusterData.df %>% dplyr::filter(time == 'am')
    gg.likelihood <- generateLikelihoodV2(df=filtered.df, daytime='am')
## Loading 'brms' package (version 2.6.0). Useful instructions
## can be found by typing help('brms'). A more detailed introduction
## to the package is available through vignette('brms_overview').
## Run theme_set(theme_default()) to use the default bayesplot theme.

## rstan (Version 2.17.3, GitRev: 2e1f913d3ca3)

## For execution on a local, multicore CPU with excess RAM we recommend calling
## options(mc.cores = parallel::detectCores()).
## To avoid recompilation of unchanged Stan programs, we recommend calling
## rstan_options(auto_write = TRUE)

## Compiling the C++ model

## recompiling to avoid crashing R session

## Start sampling

## Compiling the C++ model

## recompiling to avoid crashing R session

## Start sampling

## Compiling the C++ model

## recompiling to avoid crashing R session

## Start sampling

## Compiling the C++ model

## recompiling to avoid crashing R session

## Start sampling

## Compiling the C++ model

## recompiling to avoid crashing R session

## Start sampling

## Compiling the C++ model

## recompiling to avoid crashing R session

## Start sampling

## Compiling the C++ model

## recompiling to avoid crashing R session

## Start sampling

## Compiling the C++ model

## recompiling to avoid crashing R session

## Start sampling

## Compiling the C++ model

## recompiling to avoid crashing R session

## Start sampling
    print(gg.likelihood)