Deep Learning Asset Pricing Main Code for Training
- Tensorflow 1.12.0
- Python 3.6
Step 1: Training the SDF network
$ python3 run.py --config=config/config.json --logdir=output --saveBestFreq=128 --printOnConsole=True --saveLog=True --ignoreEpoch=32
Step 2: Run the first 8 cells of model_GAN.ipynb to generate SDF
Step 3: Run create_RF_data.py to generate the data with R * F
Step 4: Train the beta prediction network
$ python3 run_RtnFcst_ensembles.py --config config_RF --logdir output_RF --task_id 1 --trial_id 1
Step 5: Run the remaining cells of model_GAN.ipynb to get EV and XS-R2 pricing results
Datasets can be found at Google Drive