Artifact repository for paper Automatic Generation of High-Performance Quantized Machine Learning Kernels
Host machine able to run Docker.
Raspberry Pi 3B+
Download code and build docker image
$ git clone https://github.com/cowanmeg/cgo-artifact-2020.git
$ docker build -t cgo-art cgo-artifact-2020/docker
$ docker run -it-v <absolute/path/cgo-artifact-2020>:/artifact cgo-art
Build TVM
$ cd tvm
$ mkdir build && cd build
$ cmake .. && make -j4
Copy scripts to raspberry pi
$ cd /artifact$
$ export PI=<Raspberry Pi's IP address>
$ scp -r pi <pi-user@ip>:/home/pi-user
$ cd /home/pi-user/pi
$ ./download_build.sh
Benchmark handwritten quantized convolutions .
$ ./convolutions_pytorch.sh
Start TVM RPC server - leave running for following experiments
$ ./rpc.sh
Note: if port of server is not 9090 on the host machine run:
$ export PORT=<port>
Synthesize ARM micro-kernels
./synthesize.sh
Benchmark quantized convolutions
./convolutions.sh
Benchmark ResNet18
./end_to_end.sh
Generate graphs
./generate_graphs.sh