At the end of this project, you are expected to be able to explain to anyone, without the help of Google: General
- What do LIFO and FIFO mean
- What is a stack, and when to use it
- What is a queue, and when to use it
- What are the common implementations of stacks and queues
- What are the most common use cases of stacks and queues
- What is the proper way to use global variables
- Allowed editors:
vi
,vim
,emacs
- All your files will be compiled on Ubuntu 20.04 LTS using gcc, using the options
-Wall -Werror -Wextra -pedantic -std=c89
- All your files should end with a new line
- A
README.md
file, at the root of the folder of the project is mandatory - Your code should use the
Betty
style. It will be checked using betty-style.pl and betty-doc.pl - You allowed to use a maximum of one global variable
- No more than 5 functions per file
- You are allowed to use the C standard library
- The prototypes of all your functions should be included in your header file called
monty.h
- Don’t forget to push your header file
- All your header files should be include guarded
- You are expected to do the tasks in the order shown in the project
There should be one project repository per group. If you clone/fork/whatever a project repository with the same name before the second deadline, you risk a 0% score.
Please use the following data structures for this project. Don’t forget to include them in your header file.
/**
* struct stack_s - doubly linked list representation of a stack (or queue)
* @n: integer
* @prev: points to the previous element of the stack (or queue)
* @next: points to the next element of the stack (or queue)
*
* Description: doubly linked list node structure
* for stack, queues, LIFO, FIFO
*/
typedef struct stack_s
{
int n;
struct stack_s *prev;
struct stack_s *next;
} stack_t;
/**
* struct instruction_s - opcode and its function
* @opcode: the opcode
* @f: function to handle the opcode
*
* Description: opcode and its function
* for stack, queues, LIFO, FIFO
*/
typedef struct instruction_s
{
char *opcode;
void (*f)(stack_t **stack, unsigned int line_number);
} instruction_t;
- Your code will be compiled this way:
$ gcc -Wall -Werror -Wextra -pedantic -std=c90 *.c -o monty
- Any output must be printed on
stdout
- Any error message must be printed on
stderr
- Here is a link to a GitHub repository that could help you making sure your errors are printed on
stderr
- Here is a link to a GitHub repository that could help you making sure your errors are printed on
We strongly encourage you to work all together on a set of tests
Monty 0.98 is a scripting language that is first compiled into Monty byte codes (Just like Python). It relies on a unique stack, with specific instructions to manipulate it. The goal of this project is to create an interpreter for Monty ByteCodes files.
Monty byte code files
Files containing Monty byte codes usually have the .m
extension. Most of the industry uses this standard but it is not required by the specification of the language. There is not more than one instruction per line. There can be any number of spaces before or after the opcode and its argument:
julien@ubuntu:~/monty$ cat -e bytecodes/000.m
push 0$
push 1$
push 2$
push 3$
pall $
push 4$
push 5 $
push 6 $
pall$
julien@ubuntu:~/monty$
Monty byte code files can contain blank lines (empty or made of spaces only, and any additional text after the opcode or its required argument is not taken into account:
julien@ubuntu:~/monty$ cat -e bytecodes/001.m
push 0 Push 0 onto the stack$
push 1 Push 1 onto the stack$
$
push 2$
push 3$
pall $
$
$
$
push 4$
$
push 5 $
push 6 $
$
pall This is the end of our program. Monty is awesome!$
julien@ubuntu:~/monty$
The monty program
- Usage:
monty file
- where
file
is the path to the file containing Monty byte code
- where
- If the user does not give any file or more than one argument to your program, print the error message
USAGE: monty file
, followed by a new line, and exit with the statusEXIT_FAILURE
- If, for any reason, it’s not possible to open the file, print the error message
Error: Can't open file <file>
, followed by a new line, and exit with the statusEXIT_FAILURE
- where
<file>
is the name of the file
- where
- If the file contains an invalid instruction, print the error message
L<line_number>: unknown instruction <opcode>
, followed by a new line, and exit with the statusEXIT_FAILURE
- where is the line number where the instruction appears.
- Line numbers always start at 1
- The monty program runs the bytecodes line by line and stop if either:
- it executed properly every line of the file
- it finds an error in the file
- an error occured
- If you can’t malloc anymore, print the error message
Error: malloc failed
, followed by a new line, and exit with statusEXIT_FAILURE
. - You have to use
malloc
andfree
and are not allowed to use any other function fromman malloc
(realloc, calloc, …)
Implement the push
and pall
opcodes.
The push opcode
The opcode push
pushes an element to the stack.
- Usage:
push <int>
- where
<int>
is an integer
- where
- if
<int>
is not an integer or if there is no argument given topush
, print the error messageL<line_number>: usage: push integer
, followed by a new line, and exit with the statusEXIT_FAILURE
- where is the line number in the file
- You won’t have to deal with overflows. Use the
atoi
function
The pall opcode
The opcode pall
prints all the values on the stack, starting from the top of the stack.
- Usage
pall
- Format: see example
- If the stack is empty, don’t print anything
julien@ubuntu:~/monty$ cat -e bytecodes/00.m
push 1$
push 2$
push 3$
pall$
julien@ubuntu:~/monty$ ./monty bytecodes/00.m
3
2
1
julien@ubuntu:~/monty$
Repo:
- GitHub repository:
holbertonschool-monty
Implement the pint
opcode.
The pint opcode
The opcode pint
prints the value at the top of the stack, followed by a new line.
- Usage:
pint
- If the stack is empty, print the error message
L<line_number>: can't pint, stack empty
, followed by a new line, and exit with the statusEXIT_FAILURE
julien@ubuntu:~/monty$ cat bytecodes/06.m
push 1
pint
push 2
pint
push 3
pint
julien@ubuntu:~/monty$ ./monty bytecodes/06.m
1
2
3
julien@ubuntu:~/monty$
Repo:
- GitHub repository:
holbertonschool-monty
Implement the pop
opcode.
The pop opcode
The opcode pop
removes the top element of the stack.
- Usage:
pop
- If the stack is empty, print the error message
L<line_number>: can't pop an empty stack
, followed by a new line, and exit with the statusEXIT_FAILURE
julien@ubuntu:~/monty$ cat bytecodes/07.m
push 1
push 2
push 3
pall
pop
pall
pop
pall
pop
pall
julien@ubuntu:~/monty$ ./monty bytecodes/07.m
3
2
1
2
1
1
julien@ubuntu:~/monty$
Repo:
- GitHub repository:
holbertonschool-monty
Implement the swap
opcode.
The swap opcode
The opcode swap
swaps the top two elements of the stack.
- Usage:
swap
- If the stack contains less than two elements, print the error message
L<line_number>: can't swap, stack too short
, followed by a new line, and exit with the statusEXIT_FAILURE
julien@ubuntu:~/monty$ cat bytecodes/09.m
push 1
push 2
push 3
pall
swap
pall
julien@ubuntu:~/monty$ ./monty bytecodes/09.m
3
2
1
2
3
1
julien@ubuntu:~/monty$
Repo:
- GitHub repository:
holbertonschool-monty
Implement the add
opcode.
The add opcode
The opcode add
adds the top two elements of the stack.
- Usage:
add
- If the stack contains less than two elements, print the error message
L<line_number>: can't add, stack too short
, followed by a new line, and exit with the statusEXIT_FAILURE
- The result is stored in the second top element of the stack, and the top element is removed, so that at the end:
- The top element of the stack contains the result
- The stack is one element shorter
julien@ubuntu:~/monty$ cat bytecodes/12.m
push 1
push 2
push 3
pall
add
pall
julien@ubuntu:~/monty$ ./monty bytecodes/12.m
3
2
1
5
1
julien@ubuntu:~/monty$
Repo:
- GitHub repository:
holbertonschool-monty
Implement the nop
opcode.
The nop opcode
The opcode nop
doesn’t do anything.
- Usage:
nop
Repo:
- GitHub repository:
holbertonschool-monty
Implement the sub
opcode.
The sub opcode
The opcode sub
subtracts the top element of the stack from the second top element of the stack.
- Usage:
sub
- If the stack contains less than two elements, print the error message
L<line_number>: can't sub, stack too short
, followed by a new line, and exit with the statusEXIT_FAILURE
- The result is stored in the second top element of the stack, and the top element is removed, so that at the end:
- The top element of the stack contains the result
- The stack is one element shorter
julien@ubuntu:~/monty$ cat bytecodes/19.m
push 1
push 2
push 10
push 3
sub
pall
julien@ubuntu:~/monty$ ./monty bytecodes/19.m
7
2
1
julien@ubuntu:~/monty$
Implement the div opcode.
The div opcode
The opcode div
divides the second top element of the stack by the top element of the stack.
- Usage:
div
- If the stack contains less than two elements, print the error message
L<line_number>: can't div, stack too short
, followed by a new line, and exit with the statusEXIT_FAILURE
- The result is stored in the second top element of the stack, and the top element is removed, so that at the end:
- The top element of the stack contains the result
- The stack is one element shorter
- If the top element of the stack is
0
, print the error messageL<line_number>: division by zero
, followed by a new line, and exit with the statusEXIT_FAILURE
Implement the mul opcode.
The mul opcode
The opcode mul
multiplies the second top element of the stack with the top element of the stack.
- Usage:
mul
- If the stack contains less than two elements, print the error message
L<line_number>: can't mul, stack too short
, followed by a new line, and exit with the statusEXIT_FAILURE
- The result is stored in the second top element of the stack, and the top element is removed, so that at the end:
- The top element of the stack contains the result
- The stack is one element shorter
Implement the mod opcode.
The mod opcode
The opcode mod
computes the rest of the division of the second top element of the stack by the top element of the stack.
- Usage:
mod
- If the stack contains less than two elements, print the error message
L<line_number>: can't mod, stack too short
, followed by a new line, and exit with the statusEXIT_FAILURE
- The result is stored in the second top element of the stack, and the top element is removed, so that at the end:
- The top element of the stack contains the result
- The stack is one element shorter
- If the top element of the stack is
0
, print the error messageL<line_number>: division by zero
, followed by a new line, and exit with the statusEXIT_FAILURE
Every good language comes with the capability of commenting. When the first non-space character of a line is #, treat this line as a comment (don’t do anything).
Implement the pchar
opcode.
The pchar opcode
The opcode pchar
prints the char at the top of the stack, followed by a new line.
- Usage:
pchar
- The integer stored at the top of the stack is treated as the ascii value of the character to be printed
- If the value is not in the ascii table (man ascii) print the error message
L<line_number>: can't pchar, value out of range
, followed by a new line, and exit with the statusEXIT_FAILURE
- If the stack is empty, print the error message
L<line_number>: can't pchar, stack empty
, followed by a new line, and exit with the statusEXIT_FAILURE
julien@ubuntu:~/monty$ cat bytecodes/28.m
push 72
pchar
julien@ubuntu:~/monty$ ./monty bytecodes/28.m
H
julien@ubuntu:~/monty$
- main.c - Monty bytecode
- add.c - Contains a function that deletes a node after add its value to the next node
- add_stack.c - Contains a function that adds new node to stack
- file_close.c - Contains a function that closes a file
- free_functions.c - Contains a function that frees a file
- get_func.c - Search a function in opcode and execute it
- monty.h - Header file
- monty_pall.c - Contains a function that prints all elements of the stack
- monty_push.c - Contains a functions that adds an integer to stack
- nop.c - Contains a function that litterally doesn't do anything.
- pint.c - Contains a function that prints the value at the top of the stack
- pop.c - Contains a function that removes the top element of the stack
- swap.c - Contains a function that swaps the 2 top two elements of the stack
- README.md
- sub_op.c - Contains a function that subtracts the top element of the stack from the second
- div_op.c - A function that divides second top element the stack the top
- mul_op.c - A function that multiplies the second top element of the stack
- mod_op.c - A function that computes the rest of the division of the second top element of the stack by the top element of the stack
- pchar_op.c - A function that prints the char at the top of the stack
- bytecodes (test files):
- 00.m
- 01.m
- 03.m
- 04.m
- test_add.m
- test_add2.m
- test_pop.m
- test_swap.m
- test_swap2.m
_ You can contact us at _ 📩