/holbertonschool-monty

If my Repo helps you or you make a Fork don't forget to give me a star ⭐ thank you

Primary LanguageC

C - Stacks, Queues - LIFO, FIFO

Learning Objectives 🤓

At the end of this project, you are expected to be able to explain to anyone, without the help of Google: General

  • What do LIFO and FIFO mean
  • What is a stack, and when to use it
  • What is a queue, and when to use it
  • What are the common implementations of stacks and queues
  • What are the most common use cases of stacks and queues
  • What is the proper way to use global variables

Requirements

General

  • Allowed editors: vi, vim, emacs
  • All your files will be compiled on Ubuntu 20.04 LTS using gcc, using the options -Wall -Werror -Wextra -pedantic -std=c89
  • All your files should end with a new line
  • A README.md file, at the root of the folder of the project is mandatory
  • Your code should use the Betty style. It will be checked using betty-style.pl and betty-doc.pl
  • You allowed to use a maximum of one global variable
  • No more than 5 functions per file
  • You are allowed to use the C standard library
  • The prototypes of all your functions should be included in your header file called monty.h
  • Don’t forget to push your header file
  • All your header files should be include guarded
  • You are expected to do the tasks in the order shown in the project

GitHub

There should be one project repository per group. If you clone/fork/whatever a project repository with the same name before the second deadline, you risk a 0% score.

More Info

Data structures

Please use the following data structures for this project. Don’t forget to include them in your header file.

/**
 * struct stack_s - doubly linked list representation of a stack (or queue)
 * @n: integer
 * @prev: points to the previous element of the stack (or queue)
 * @next: points to the next element of the stack (or queue)
 *
 * Description: doubly linked list node structure
 * for stack, queues, LIFO, FIFO
 */
typedef struct stack_s
{
        int n;
        struct stack_s *prev;
        struct stack_s *next;
} stack_t;
/**
 * struct instruction_s - opcode and its function
 * @opcode: the opcode
 * @f: function to handle the opcode
 *
 * Description: opcode and its function
 * for stack, queues, LIFO, FIFO
 */
typedef struct instruction_s
{
        char *opcode;
        void (*f)(stack_t **stack, unsigned int line_number);
} instruction_t;

Compilation & Output

  • Your code will be compiled this way:
$ gcc -Wall -Werror -Wextra -pedantic -std=c90 *.c -o monty
  • Any output must be printed on stdout
  • Any error message must be printed on stderr
    • Here is a link to a GitHub repository that could help you making sure your errors are printed on stderr

Tests

We strongly encourage you to work all together on a set of tests

The Monty language

Monty 0.98 is a scripting language that is first compiled into Monty byte codes (Just like Python). It relies on a unique stack, with specific instructions to manipulate it. The goal of this project is to create an interpreter for Monty ByteCodes files.

Monty byte code files

Files containing Monty byte codes usually have the .m extension. Most of the industry uses this standard but it is not required by the specification of the language. There is not more than one instruction per line. There can be any number of spaces before or after the opcode and its argument:

julien@ubuntu:~/monty$ cat -e bytecodes/000.m
push 0$
push 1$
push 2$
  push 3$
                   pall    $
push 4$
    push 5    $
      push    6        $
pall$
julien@ubuntu:~/monty$

Monty byte code files can contain blank lines (empty or made of spaces only, and any additional text after the opcode or its required argument is not taken into account:

julien@ubuntu:~/monty$ cat -e bytecodes/001.m
push 0 Push 0 onto the stack$
push 1 Push 1 onto the stack$
$
push 2$
  push 3$
                   pall    $
$
$
                           $
push 4$
$
    push 5    $
      push    6        $
$
pall This is the end of our program. Monty is awesome!$
julien@ubuntu:~/monty$

The monty program

  • Usage: monty file
    • where file is the path to the file containing Monty byte code
  • If the user does not give any file or more than one argument to your program, print the error message USAGE: monty file, followed by a new line, and exit with the status EXIT_FAILURE
  • If, for any reason, it’s not possible to open the file, print the error message Error: Can't open file <file>, followed by a new line, and exit with the status EXIT_FAILURE
    • where <file> is the name of the file
  • If the file contains an invalid instruction, print the error message L<line_number>: unknown instruction <opcode>, followed by a new line, and exit with the status EXIT_FAILURE
    • where is the line number where the instruction appears.
    • Line numbers always start at 1
  • The monty program runs the bytecodes line by line and stop if either:
    • it executed properly every line of the file
    • it finds an error in the file
    • an error occured
  • If you can’t malloc anymore, print the error message Error: malloc failed, followed by a new line, and exit with status EXIT_FAILURE.
  • You have to use malloc and free and are not allowed to use any other function from man malloc (realloc, calloc, …)

Tasks 📝

0. push, pall (mandatory)

Implement the push and pall opcodes.

The push opcode

The opcode push pushes an element to the stack.

  • Usage: push <int>
    • where <int> is an integer
  • if <int> is not an integer or if there is no argument given to push, print the error message L<line_number>: usage: push integer, followed by a new line, and exit with the status EXIT_FAILURE
    • where is the line number in the file
  • You won’t have to deal with overflows. Use the atoi function

The pall opcode

The opcode pall prints all the values on the stack, starting from the top of the stack.

  • Usage pall
  • Format: see example
  • If the stack is empty, don’t print anything
julien@ubuntu:~/monty$ cat -e bytecodes/00.m
push 1$
push 2$
push 3$
pall$
julien@ubuntu:~/monty$ ./monty bytecodes/00.m
3
2
1
julien@ubuntu:~/monty$

Repo:

  • GitHub repository: holbertonschool-monty

1. pint (mandatory)

Implement the pint opcode.

The pint opcode

The opcode pint prints the value at the top of the stack, followed by a new line.

  • Usage: pint
  • If the stack is empty, print the error message L<line_number>: can't pint, stack empty, followed by a new line, and exit with the status EXIT_FAILURE
julien@ubuntu:~/monty$ cat bytecodes/06.m
push 1
pint
push 2
pint
push 3
pint
julien@ubuntu:~/monty$ ./monty bytecodes/06.m
1
2
3
julien@ubuntu:~/monty$

Repo:

  • GitHub repository: holbertonschool-monty

2. pop (mandatory)

Implement the pop opcode.

The pop opcode

The opcode pop removes the top element of the stack.

  • Usage: pop
  • If the stack is empty, print the error message L<line_number>: can't pop an empty stack, followed by a new line, and exit with the status EXIT_FAILURE
julien@ubuntu:~/monty$ cat bytecodes/07.m
push 1
push 2
push 3
pall
pop
pall
pop
pall
pop
pall
julien@ubuntu:~/monty$ ./monty bytecodes/07.m
3
2
1
2
1
1
julien@ubuntu:~/monty$

Repo:

  • GitHub repository: holbertonschool-monty

3. swap (mandatory)

Implement the swap opcode.

The swap opcode

The opcode swap swaps the top two elements of the stack.

  • Usage: swap
  • If the stack contains less than two elements, print the error message L<line_number>: can't swap, stack too short, followed by a new line, and exit with the status EXIT_FAILURE
julien@ubuntu:~/monty$ cat bytecodes/09.m
push 1
push 2
push 3
pall
swap
pall
julien@ubuntu:~/monty$ ./monty bytecodes/09.m
3
2
1
2
3
1
julien@ubuntu:~/monty$

Repo:

  • GitHub repository: holbertonschool-monty

4. add (mandatory)

Implement the add opcode.

The add opcode

The opcode add adds the top two elements of the stack.

  • Usage: add
  • If the stack contains less than two elements, print the error message L<line_number>: can't add, stack too short, followed by a new line, and exit with the status EXIT_FAILURE
  • The result is stored in the second top element of the stack, and the top element is removed, so that at the end:
    • The top element of the stack contains the result
    • The stack is one element shorter
julien@ubuntu:~/monty$ cat bytecodes/12.m
push 1
push 2
push 3
pall
add
pall

julien@ubuntu:~/monty$ ./monty bytecodes/12.m
3
2
1
5
1
julien@ubuntu:~/monty$

Repo:

  • GitHub repository: holbertonschool-monty

5. nop (mandatory)

Implement the nop opcode.

The nop opcode

The opcode nop doesn’t do anything.

  • Usage: nop

Repo:

  • GitHub repository: holbertonschool-monty

6 - Sub (advanced)

Implement the sub opcode.

The sub opcode

The opcode sub subtracts the top element of the stack from the second top element of the stack.

  • Usage: sub
  • If the stack contains less than two elements, print the error message L<line_number>: can't sub, stack too short, followed by a new line, and exit with the status EXIT_FAILURE
  • The result is stored in the second top element of the stack, and the top element is removed, so that at the end:
    • The top element of the stack contains the result
    • The stack is one element shorter
julien@ubuntu:~/monty$ cat bytecodes/19.m
push 1
push 2
push 10
push 3
sub
pall
julien@ubuntu:~/monty$ ./monty bytecodes/19.m
7
2
1
julien@ubuntu:~/monty$

7 - Div

Implement the div opcode.

The div opcode

The opcode div divides the second top element of the stack by the top element of the stack.

  • Usage: div
  • If the stack contains less than two elements, print the error message L<line_number>: can't div, stack too short, followed by a new line, and exit with the status EXIT_FAILURE
  • The result is stored in the second top element of the stack, and the top element is removed, so that at the end:
    • The top element of the stack contains the result
    • The stack is one element shorter
  • If the top element of the stack is 0, print the error message L<line_number>: division by zero, followed by a new line, and exit with the status EXIT_FAILURE

8 - Mul

Implement the mul opcode.

The mul opcode

The opcode mul multiplies the second top element of the stack with the top element of the stack.

  • Usage: mul
  • If the stack contains less than two elements, print the error message L<line_number>: can't mul, stack too short, followed by a new line, and exit with the status EXIT_FAILURE
  • The result is stored in the second top element of the stack, and the top element is removed, so that at the end:
    • The top element of the stack contains the result
    • The stack is one element shorter

9 - Mod

Implement the mod opcode.

The mod opcode

The opcode mod computes the rest of the division of the second top element of the stack by the top element of the stack.

  • Usage: mod
  • If the stack contains less than two elements, print the error message L<line_number>: can't mod, stack too short, followed by a new line, and exit with the status EXIT_FAILURE
  • The result is stored in the second top element of the stack, and the top element is removed, so that at the end:
    • The top element of the stack contains the result
    • The stack is one element shorter
  • If the top element of the stack is 0, print the error message L<line_number>: division by zero, followed by a new line, and exit with the status EXIT_FAILURE

10 - Comments

Every good language comes with the capability of commenting. When the first non-space character of a line is #, treat this line as a comment (don’t do anything).

11 - Pchar

Implement the pchar opcode.

The pchar opcode

The opcode pchar prints the char at the top of the stack, followed by a new line.

  • Usage: pchar
  • The integer stored at the top of the stack is treated as the ascii value of the character to be printed
  • If the value is not in the ascii table (man ascii) print the error message L<line_number>: can't pchar, value out of range, followed by a new line, and exit with the status EXIT_FAILURE
  • If the stack is empty, print the error message L<line_number>: can't pchar, stack empty, followed by a new line, and exit with the status EXIT_FAILURE
julien@ubuntu:~/monty$ cat bytecodes/28.m
push 72
pchar
julien@ubuntu:~/monty$ ./monty bytecodes/28.m
H
julien@ubuntu:~/monty$

Files

  • main.c - Monty bytecode
  • add.c - Contains a function that deletes a node after add its value to the next node
  • add_stack.c - Contains a function that adds new node to stack
  • file_close.c - Contains a function that closes a file
  • free_functions.c - Contains a function that frees a file
  • get_func.c - Search a function in opcode and execute it
  • monty.h - Header file
  • monty_pall.c - Contains a function that prints all elements of the stack
  • monty_push.c - Contains a functions that adds an integer to stack
  • nop.c - Contains a function that litterally doesn't do anything.
  • pint.c - Contains a function that prints the value at the top of the stack
  • pop.c - Contains a function that removes the top element of the stack
  • swap.c - Contains a function that swaps the 2 top two elements of the stack
  • README.md
  • sub_op.c - Contains a function that subtracts the top element of the stack from the second
  • div_op.c - A function that divides second top element the stack the top
  • mul_op.c - A function that multiplies the second top element of the stack
  • mod_op.c - A function that computes the rest of the division of the second top element of the stack by the top element of the stack
  • pchar_op.c - A function that prints the char at the top of the stack
  • bytecodes (test files):
    • 00.m
    • 01.m
    • 03.m
    • 04.m
    • test_add.m
    • test_add2.m
    • test_pop.m
    • test_swap.m
    • test_swap2.m

Authors 🙈 🙉

_ You can contact us at _ 📩

Leroty Lucie

crasride @crasride @crasride

Fernandez Armas José Daniel

crasride @crasride @crasride