This is an unofficial chainer re-implementation of a paper, Unsupervised Pixel-Level Domain Adaptation with Generative Adversarial Networks [Bousmalis+, CVPR2017].
- Python 3.5+
- Chainer 2.0+
- Numpy
- Matplotlib
Note that this is not reproduced perfectly. Batchsize=32, #epoch=200.
Method | Original [1] | Ours |
---|---|---|
Source-only | 63.6 % | 59.5 % |
Target-only | 96.4 % | 95.9 % |
PixelDA | 98.2 % | 98.0 % |
Download MNIST-M dataset from here (in .pkl format).
python train.py source_only --gpu gpuno --out directory_out
python train.py target_only --gpu gpuno --out directory_out
python train_gan.py --gpu gpuno --out directory_out
Loss curve | Accuracy |
---|---|
- [1]: K. Bousmalis, et al. "Unsupervised Pixel-Level Domain Adaptation with Generative Adversarial Networks.", in CVPR, 2017.
- [2]: Original implementation