A general framework to define and execute the Stable Diffusion task.
- The latest acceleration tech to generate images in only 1 step using SDXL Turbo & Latent Consistency Models (LCM)
- Unified task definition for Stable Diffusion 1.5, 2.1 and Stable Diffusion XL
- SDXL - Base + Refiner (ensemble of expert denoisers) and standalone Refiner
- Controlnet and various preprocessing methods
- UNet replacement
- Scheduler configuration
- LoRA
- VAE
- Textual Inversion
- Long prompt
- Prompt weighting using Compel
- Maximized reproducibility
- Auto LoRA and Textual Inversion model downloading from non-huggingface URL
Here is an example of the SDXL image generation, with LoRA, ControlNet, utilizing SDXL Turbo to generate images in only 1 step.
from sd_task.inference_task_runner.inference_task import run_task
from sd_task.inference_task_args.task_args import InferenceTaskArgs
from diffusers.utils import make_image_grid
if __name__ == '__main__':
args = {
"version": "2.0.0",
"base_model": {
"name": "stabilityai/sdxl-turbo"
},
"prompt": "best quality, ultra high res, photorealistic++++, 1girl, desert, full shot, dark stillsuit, "
"stillsuit mask up, gloves, solo, highly detailed eyes,"
"hyper-detailed, high quality visuals, dim Lighting, ultra-realistic, sharply focused, octane render,"
"8k UHD",
"negative_prompt": "no moon++, buried in sand, bare hands, figerless gloves, "
"blue stillsuit, barefoot, weapon, vegetation, clouds, glowing eyes++, helmet, "
"bare handed, no gloves, double mask, simplified, abstract, unrealistic, impressionistic, "
"low resolution,",
"task_config": {
"num_images": 9,
"steps": 1,
"cfg": 0
},
"lora": {
"model": "https://civitai.com/api/download/models/178048"
},
"controlnet": {
"model": "diffusers/controlnet-canny-sdxl-1.0",
"image_dataurl": "...",
"preprocess": {
"method": "canny"
},
"weight": 70
},
"scheduler": {
"method": "EulerAncestralDiscreteScheduler",
"args": {
"timestep_spacing": "trailing"
}
}
}
images = run_task(InferenceTaskArgs.model_validate(args))
image_grid = make_image_grid(images, 3, 3)
image_grid.save("./data/sdxl_turbo_lora_controlnet.png")
More examples can be found in Examples
Create and activate the virtual environment:
$ python -m venv ./venv
$ source ./venv/bin/activate
Install the dependencies:
# Use requirements_macos.txt on Macos
(venv) $ pip install -r requirments_cuda.txt
Cache the base model files:
(venv) $ python ./sd_task/prefetch.py
Check and run the examples:
(venv) $ python ./examples/sdxl_turbo_lora_controlnet.py
More explanations can be found in the doc:
https://docs.crynux.ai/application-development/stable-diffusion-task
The complete task definition can be found in the file ./sd_task/inference_task_args/task_args.py
The JSON schemas for the tasks could be used to validate the task arguments by other projects.
The schemas are given under ./schema
. Projects could use the URL to load the JSON schema files directly.
Update JSON schema file
# In the root folder of the project
$ ./venv/bin/activate
(venv) $ pip install -r requirements_cuda.txt
(venv) $ pip install .
(venv) $ python ./sd_task/inference_task_args/generate_json_schema.py