Model-agnostic LangChain/LangGraph agents powered entirely by MCP tools over HTTP/SSE.
Discover MCP tools dynamically. Bring your own LangChain model. Build production-ready agentsβfast.
π Documentation β’ π Issues
- π Zero manual tool wiring β tools are discovered dynamically from MCP servers (HTTP/SSE)
- π External APIs welcome β connect to remote MCP servers (with headers/auth)
- π§ Model-agnostic β pass any LangChain chat model instance (OpenAI, Anthropic, Ollama, Groq, local, β¦)
- β‘ DeepAgents (optional) β if installed, you get a deep agent loop; otherwise robust LangGraph ReAct fallback
- π οΈ Typed tool args β JSON-Schema β Pydantic β LangChain
BaseTool(typed, validated calls) - π§ͺ Quality bar β mypy (strict), ruff, pytest, GitHub Actions, docs
MCP first. Agents shouldnβt hardcode tools β they should discover and call them. DeepMCPAgent builds that bridge.
Install from PyPI:
pip install "deepmcpagent[deep]"This installs DeepMCPAgent with DeepAgents support (recommended) for the best agent loop. Other optional extras:
devβ linting, typing, testsdocsβ MkDocs + Material + mkdocstringsexamplesβ dependencies used by bundled examples
# install with deepagents + dev tooling
pip install "deepmcpagent[deep,dev]"pip install "deepmcpagent[deep,dev]"python examples/servers/math_server.pyThis serves an MCP endpoint at: http://127.0.0.1:8000/mcp
python examples/use_agent.pyWhat youβll see:
DeepMCPAgent lets you pass any LangChain chat model instance (or a provider id string if you prefer init_chat_model):
import asyncio
from deepmcpagent import HTTPServerSpec, build_deep_agent
# choose your model:
# from langchain_openai import ChatOpenAI
# model = ChatOpenAI(model="gpt-4.1")
# from langchain_anthropic import ChatAnthropic
# model = ChatAnthropic(model="claude-3-5-sonnet-latest")
# from langchain_community.chat_models import ChatOllama
# model = ChatOllama(model="llama3.1")
async def main():
servers = {
"math": HTTPServerSpec(
url="http://127.0.0.1:8000/mcp",
transport="http", # or "sse"
# headers={"Authorization": "Bearer <token>"},
),
}
graph, _ = await build_deep_agent(
servers=servers,
model=model,
instructions="Use MCP tools precisely."
)
out = await graph.ainvoke({"messages":[{"role":"user","content":"add 21 and 21 with tools"}]})
print(out)
asyncio.run(main())Tip: If you pass a string like
"openai:gpt-4.1", weβll call LangChainβsinit_chat_model()for you (and it will read env vars likeOPENAI_API_KEY). Passing a model instance gives you full control.
DeepMCPAgent v0.5 introduces Cross-Agent Communication β agents that can talk to each other without extra servers, message queues, or orchestration layers.
You can now attach one agent as a peer inside another, turning it into a callable tool.
Each peer appears automatically as ask_agent_<name> or can be reached via broadcast_to_agents for parallel reasoning across multiple agents.
This means your agents can delegate, collaborate, and critique each other β all through the same MCP tool interface.
Itβs lightweight, model-agnostic, and fully transparent: every peer call is traced like any other tool invocation.
import asyncio
from deepmcpagent import HTTPServerSpec, build_deep_agent
from deepmcpagent.cross_agent import CrossAgent
async def main():
# 1οΈβ£ Build a "research" peer agent
research_graph, _ = await build_deep_agent(
servers={"web": HTTPServerSpec(url="http://127.0.0.1:8000/mcp")},
model="openai:gpt-4o-mini",
instructions="You are a focused research assistant that finds and summarizes sources.",
)
# 2οΈβ£ Build the main agent and attach the peer as a tool
main_graph, _ = await build_deep_agent(
servers={"math": HTTPServerSpec(url="http://127.0.0.1:9000/mcp")},
model="openai:gpt-4.1",
instructions="You are a lead analyst. Use peers when you need research or summarization.",
cross_agents={
"researcher": CrossAgent(agent=research_graph, description="A web research peer.")
},
trace_tools=True, # see all tool calls + peer responses in console
)
# 3οΈβ£ Ask a question β the main agent can now call the researcher
result = await main_graph.ainvoke({
"messages": [{"role": "user", "content": "Find recent research on AI ethics and summarize it."}]
})
print(result)
asyncio.run(main())π§© Result:
Your main agent automatically calls ask_agent_researcher(...) when it decides delegation makes sense, and the peer agent returns its best final answer β all transparently handled by the MCP layer.
- Researcher β Writer β Editor pipelines
- Safety or reviewer peers that audit outputs
- Retrieval or reasoning specialists
- Multi-model ensembles combining small and large LLMs
No new infrastructure. No complex orchestration. Just agents helping agents, powered entirely by MCP over HTTP/SSE.
π§ One framework, many minds β DeepMCPAgent turns individual LLMs into a cooperative system.
# list tools from one or more HTTP servers
deepmcpagent list-tools \
--http name=math url=http://127.0.0.1:8000/mcp transport=http \
--model-id "openai:gpt-4.1"
# interactive agent chat (HTTP/SSE servers only)
deepmcpagent run \
--http name=math url=http://127.0.0.1:8000/mcp transport=http \
--model-id "openai:gpt-4.1"The CLI accepts repeated
--httpblocks; addheader.X=Ypairs for auth:--http name=ext url=https://api.example.com/mcp transport=http header.Authorization="Bearer TOKEN"
flowchart LR
%% Groupings
subgraph User["π€ User / App"]
Q["Prompt / Task"]
CLI["CLI (Typer)"]
PY["Python API"]
end
subgraph Agent["π€ Agent Runtime"]
DIR["build_deep_agent()"]
PROMPT["prompt.py\n(DEFAULT_SYSTEM_PROMPT)"]
subgraph AGRT["Agent Graph"]
DA["DeepAgents loop\n(if installed)"]
REACT["LangGraph ReAct\n(fallback)"]
end
LLM["LangChain Model\n(instance or init_chat_model(provider-id))"]
TOOLS["LangChain Tools\n(BaseTool[])"]
end
subgraph MCP["π§° Tooling Layer (MCP)"]
LOADER["MCPToolLoader\n(JSON-Schema β Pydantic β BaseTool)"]
TOOLWRAP["_FastMCPTool\n(async _arun β client.call_tool)"]
end
subgraph FMCP["π FastMCP Client"]
CFG["servers_to_mcp_config()\n(mcpServers dict)"]
MULTI["FastMCPMulti\n(fastmcp.Client)"]
end
subgraph SRV["π MCP Servers (HTTP/SSE)"]
S1["Server A\n(e.g., math)"]
S2["Server B\n(e.g., search)"]
S3["Server C\n(e.g., github)"]
end
%% Edges
Q -->|query| CLI
Q -->|query| PY
CLI --> DIR
PY --> DIR
DIR --> PROMPT
DIR --> LLM
DIR --> LOADER
DIR --> AGRT
LOADER --> MULTI
CFG --> MULTI
MULTI -->|list_tools| SRV
LOADER --> TOOLS
TOOLS --> AGRT
AGRT <-->|messages| LLM
AGRT -->|tool calls| TOOLWRAP
TOOLWRAP --> MULTI
MULTI -->|call_tool| SRV
SRV -->|tool result| MULTI --> TOOLWRAP --> AGRT -->|final answer| CLI
AGRT -->|final answer| PY
sequenceDiagram
autonumber
participant U as User
participant CLI as CLI/Python
participant Builder as build_deep_agent()
participant Loader as MCPToolLoader
participant Graph as Agent Graph (DeepAgents or ReAct)
participant LLM as LangChain Model
participant Tool as _FastMCPTool
participant FMCP as FastMCP Client
participant S as MCP Server (HTTP/SSE)
U->>CLI: Enter prompt
CLI->>Builder: build_deep_agent(servers, model, instructions?)
Builder->>Loader: get_all_tools()
Loader->>FMCP: list_tools()
FMCP->>S: HTTP(S)/SSE list_tools
S-->>FMCP: tools + JSON-Schema
FMCP-->>Loader: tool specs
Loader-->>Builder: BaseTool[]
Builder-->>CLI: (Graph, Loader)
U->>Graph: ainvoke({messages:[user prompt]})
Graph->>LLM: Reason over system + messages + tool descriptions
LLM-->>Graph: Tool call (e.g., add(a=3,b=5))
Graph->>Tool: _arun(a=3,b=5)
Tool->>FMCP: call_tool("add", {a:3,b:5})
FMCP->>S: POST /mcp tools.call("add", {...})
S-->>FMCP: result { data: 8 }
FMCP-->>Tool: result
Tool-->>Graph: ToolMessage(content=8)
Graph->>LLM: Continue with observations
LLM-->>Graph: Final response "(3 + 5) * 7 = 56"
Graph-->>CLI: messages (incl. final LLM answer)
stateDiagram-v2
[*] --> AcquireTools
AcquireTools: Discover MCP tools via FastMCP\n(JSON-Schema β Pydantic β BaseTool)
AcquireTools --> Plan
Plan: LLM plans next step\n(uses system prompt + tool descriptions)
Plan --> CallTool: if tool needed
Plan --> Respond: if direct answer sufficient
CallTool: _FastMCPTool._arun\nβ client.call_tool(name, args)
CallTool --> Observe: receive tool result
Observe: Parse result payload (data/text/content)
Observe --> Decide
Decide: More tools needed?
Decide --> Plan: yes
Decide --> Respond: no
Respond: LLM crafts final message
Respond --> [*]
classDiagram
class StdioServerSpec {
+command: str
+args: List[str]
+env: Dict[str,str]
+cwd: Optional[str]
+keep_alive: bool
}
class HTTPServerSpec {
+url: str
+transport: Literal["http","streamable-http","sse"]
+headers: Dict[str,str]
+auth: Optional[str]
}
class FastMCPMulti {
-_client: fastmcp.Client
+client(): Client
}
class MCPToolLoader {
-_multi: FastMCPMulti
+get_all_tools(): List[BaseTool]
+list_tool_info(): List[ToolInfo]
}
class _FastMCPTool {
+name: str
+description: str
+args_schema: Type[BaseModel]
-_tool_name: str
-_client: Any
+_arun(**kwargs) async
}
class ToolInfo {
+server_guess: str
+name: str
+description: str
+input_schema: Dict[str,Any]
}
class build_deep_agent {
+servers: Mapping[str,ServerSpec]
+model: ModelLike
+instructions?: str
+returns: (graph, loader)
}
StdioServerSpec <|-- ServerSpec
HTTPServerSpec <|-- ServerSpec
FastMCPMulti o--> ServerSpec : uses servers_to_mcp_config()
MCPToolLoader o--> FastMCPMulti
MCPToolLoader --> _FastMCPTool : creates
_FastMCPTool ..> BaseTool
build_deep_agent --> MCPToolLoader : discovery
build_deep_agent --> _FastMCPTool : tools for agent
These diagrams reflect the current implementation:
- Model is required (string provider-id or LangChain model instance).
- MCP tools only, discovered at runtime via FastMCP (HTTP/SSE).
- Agent loop prefers DeepAgents if installed; otherwise LangGraph ReAct.
- Tools are typed via JSON-Schema β Pydantic β LangChain BaseTool.
- Fancy console output shows discovered tools, calls, results, and final answer.
# install dev tooling
pip install -e ".[dev]"
# lint & type-check
ruff check .
mypy
# run tests
pytest -q- Your keys, your model β we donβt enforce a provider; pass any LangChain model.
- Use HTTP headers in
HTTPServerSpecto deliver bearer/OAuth tokens to servers.
-
PEP 668: externally managed environment (macOS + Homebrew) Use a virtualenv:
python3 -m venv .venv source .venv/bin/activate -
404 Not Found when connecting Ensure your server uses a path (e.g.,
/mcp) and your client URL includes it. -
Tool calls failing / attribute errors Ensure youβre on the latest version; our tool wrapper uses
PrivateAttrfor client state. -
High token counts Thatβs normal with tool-calling models. Use smaller models for dev.
Apache-2.0 β see LICENSE.
- The MCP community for a clean protocol.
- LangChain and LangGraph for powerful agent runtimes.
- FastMCP for solid client & server implementations.
