Dependency injection the python way, the good way. Not a port of Guice or Spring.
- Fast.
- Thread-safe.
- Simple to use.
- Does not steal class constructors.
- Does not try to manage your application object graph.
- Transparently integrates into tests.
- Supports Python 2.7 and Python 3.3+.
- Supports type hinting in Python 3.5+.
- Autoparams leveraging type annotations.
Use pip to install the lastest version:
pip install inject
@inject.autoparams
returns a decorator which automatically injects arguments into a function
that uses type annotations. This is supported only in Python >= 3.5.
@inject.autoparams()
def refresh_cache(cache: RedisCache, db: DbInterface):
pass
There is an option to specify which arguments we want to inject without attempts of injecting everything:
@inject.autoparams('cache', 'db')
def sign_up(name, email, cache, db):
pass
# Import the inject module.
import inject
# `inject.instance` requests dependencies from the injector.
def foo(bar):
cache = inject.instance(Cache)
cache.save('bar', bar)
# `inject.params` injects dependencies as keyword arguments or positional argument.
# Also you can use @inject.autoparams in Python 3.5, see the example above.
@inject.params(cache=Cache, user=CurrentUser)
def baz(foo, cache=None, user=None):
cache.save('foo', foo, user)
# this can be called in different ways:
# with injected arguments
baz('foo')
# with positional arguments
baz('foo', my_cache)
# with keyword arguments
baz('foo', my_cache, user=current_user)
# `inject.param` is deprecated, use `inject.params` instead.
@inject.param('cache', Cache)
def bar(foo, cache=None):
cache.save('foo', foo)
# `inject.attr` creates properties (descriptors) which request dependencies on access.
class User(object):
cache = inject.attr(Cache)
def __init__(self, id):
self.id = id
def save(self):
self.cache.save('users', self)
@classmethod
def load(cls, id):
return cls.cache.load('users', id)
# Create an optional configuration.
def my_config(binder):
binder.install(my_config2) # Add bindings from another config.
binder.bind(Cache, RedisCache('localhost:1234'))
# Configure a shared injector.
inject.configure(my_config)
# Instantiate User as a normal class. Its `cache` dependency is injected when accessed.
user = User(10)
user.save()
# Call the functions, the dependencies are automatically injected.
foo('Hello')
bar('world')
Django can load some modules multiple times which can lead to
InjectorException: Injector is already configured
. You can use configure_once
which
is guaranteed to run only once when the injector is absent:
import inject
inject.configure_once(my_config)
In tests use inject.clear_and_configure(callable)
to create a new injector on setup,
and optionally inject.clear()
to clean up on tear down:
class MyTest(unittest.TestCase):
def setUp(self):
inject.clear_and_configure(lambda binder: binder
.bind(Cache, Mock() \
.bind(Validator, TestValidator())
def tearDown(self):
inject.clear()
After configuration the injector is thread-safe and can be safely reused by multiple threads.
Instance bindings always return the same instance:
redis = RedisCache(address='localhost:1234')
def config(binder):
binder.bind(Cache, redis)
Constructor bindings create a singleton on injection:
def config(binder):
# Creates a redis cache singleton on first injection.
binder.bind_to_constructor(Cache, lambda: RedisCache(address='localhost:1234'))
Provider bindings call the provider on injection:
def get_my_thread_local_cache():
pass
def config(binder):
# Executes the provider on each injection.
binder.bind_to_provider(Cache, get_my_thread_local_cache)
Runtime bindings automatically create singletons on injection, require no configuration.
For example, only the Config
class binding is present, other bindings are runtime:
class Config(object):
pass
class Cache(object):
config = inject.attr(Config)
class Db(object):
config = inject.attr(Config)
class User(object):
cache = inject.attr(Cache)
db = inject.attr(Db)
@classmethod
def load(cls, user_id):
return cls.cache.load('users', user_id) or cls.db.load('users', user_id)
inject.configure(lambda binder: binder.bind(Config, load_config_file()))
user = User.load(10)
Sometimes runtime binding leads to unexpected behaviour. Say if you forget
to bind an instance to a class, inject
will try to implicitly instantiate it.
If an instance is unintentionally created with default arguments it may lead to
hard-to-debug bugs. To disable runtime binding and make sure that only
explicitly bound instances are injected, pass bind_in_runtime=False
to inject.configure
, inject.configure_once
or inject.clear_and_configure
.
In this case inject
immediately raises InjectorException
when the code
tries to get an unbound instance.
It is possible to use any hashable object as a binding key. For example:
import inject
inject.configure(lambda binder: \
binder.bind('host', 'localhost') \
binder.bind('port', 1234))
I've used Guice and Spring in Java for a lot of years, and I don't like their scopes.
python-inject
by default creates objects as singletons. It does not need a prototype scope
as in Spring or NO_SCOPE as in Guice because python-inject
does not steal your class
constructors. Create instances the way you like and then inject dependencies into them.
Other scopes such as a request scope or a session scope are fragile, introduce high coupling,
and are difficult to test. In python-inject
write custom providers which can be thread-local,
request-local, etc.
For example, a thread-local current user provider:
import inject
import threading
# Given a user class.
class User(object):
pass
# Create a thread-local current user storage.
_LOCAL = threading.local()
def get_current_user():
return getattr(_LOCAL, 'user', None)
def set_current_user(user):
_LOCAL.user = user
# Bind User to a custom provider.
inject.configure(lambda binder: binder.bind_to_provider(User, get_current_user))
# Inject the current user.
@inject.params(user=User)
def foo(user):
pass
Apache License 2.0
- Ivan Korobkov @ivankorobkov
- Jaime Wyant @jaimewyant
- Sebastian Buczyński @Enforcer
- Oleksandr Fedorov @Fedorof