/kann

We will change this lightweight C library to fit for SEAL.

Primary LanguageCOtherNOASSERTION

Plan-for-the-change-of-KANN

This repository is for the change of KANN code and this is the plan of change.

跑CNN,得到的相关的函数: kann_layer_conv2d
kad_max2d
kann_layer_dropout
kann_layer_dense
kann_layer_cost
kann_train_fnn1

kautodiff.c里需要修改的结构

typedef struct kad_node_t {

float      *x;              /* value; allocated for internal nodes *///需要改成加密类型

float      *g;              /* gradient; allocated for internal nodes */

}

kautodiff.c里需要修改的函数:

============================= //下述计算函数均需要修改,使之可以用于密态运算 /* operators taking two operands */

kad_node_t *kad_add(kad_node_t *x, kad_node_t y); / f(x,y) = x + y

kad_node_t *kad_sub(kad_node_t *x, kad_node_t y); / f(x,y) = x - y (generalized element-wise subtraction) */

kad_node_t *kad_mul(kad_node_t *x, kad_node_t y); / f(x,y) = x * y (generalized element-wise product) */

kad_node_t *kad_matmul(kad_node_t *x, kad_node_t y); / f(x,y) = x * y (general matrix product) */

kad_node_t *kad_cmul(kad_node_t *x, kad_node_t y); / f(x,y) = x * y^T (column-wise matrix product; i.e. y is transposed) */

//下述函数里面涉及到梯度变量g和变量x的都需要修改

const float *kad_eval_at(int n, kad_node_t **a, int from); //返回一个节点的值

void kad_grad(int n, kad_node_t **a, int from) //里面涉及到梯度变量g的都需要修改

static inline kad_node_t *kad_dup1(const kad_node_t *p)

kad_node_t **kad_clone(int n, kad_node_t **v, int batch_size)

//下述计算函数均需要修改

static inline float kad_sdot(int n, const float *x, const float y) / BLAS sdot using SSE */

static inline void kad_saxpy_inlined(int n, float a, const float *x, float y) / BLAS saxpy using SSE */

static inline float kad_sdot(int n, const float *x, const float y) / BLAS sdot */

static inline void kad_saxpy_inlined(int n, float a, const float *x, float *y) // BLAS saxpy

void kad_vec_mul_sum(int n, float *a, const float *b, const float *c)

void kad_saxpy(int n, float a, const float *x, float *y)

//下面两个函数在define HAVE_CBLAS 之后需要修改

void kad_sgemm_simple(int trans_A, int trans_B, int M, int N, int K, const float *A, const float *B, float *C)

void kad_sgemm_simple(int trans_A, int trans_B, int M, int N, int K, const float *A, const float *B, float *C)

注意
/***************************

  • Random number generator *
    ***************************/

下述为算术操作的函数,里面涉及了x和梯度变量g

int kad_op_add(kad_node_t *p, int action)

int kad_op_sub(kad_node_t *p, int action)

int kad_op_mul(kad_node_t *p, int action)

int kad_op_cmul(kad_node_t *p, int action)

int kad_op_matmul(kad_node_t *p, int action)

int kad_op_square(kad_node_t *p, int action)

int kad_op_exp(kad_node_t *p, int action)

int kad_op_log(kad_node_t *p, int action)//里面有除法

int kad_op_reduce_sum(kad_node_t *p, int action)

int kad_op_reduce_mean(kad_node_t *p, int action)

/********** Miscellaneous **********/

int kad_op_dropout(kad_node_t *p, int action)

int kad_op_sample_normal(kad_node_t p, int action) / not tested */

int kad_op_slice(kad_node_t *p, int action)

int kad_op_concat(kad_node_t *p, int action)

int kad_op_reshape(kad_node_t *p, int action)

int kad_op_reverse(kad_node_t *p, int action)

/********** Cost functions **********/

int kad_op_mse(kad_node_t *p, int action)

int kad_op_ce_bin(kad_node_t *p, int action)

int kad_op_ce_bin_neg(kad_node_t *p, int action)

int kad_op_ce_multi(kad_node_t p, int action)

/
********* Normalization **********/

int kad_op_stdnorm(kad_node_t *p, int action)

/********** Activation functions **********/

int kad_op_sigm(kad_node_t *p, int action)

int kad_op_tanh(kad_node_t *p, int action)

int kad_op_relu(kad_node_t *p, int action)

int kad_op_sin(kad_node_t *p, int action)

int kad_op_softmax(kad_node_t *p, int action)

/********** Multi-node pooling **********/

int kad_op_avg(kad_node_t *p, int action)

int kad_op_max(kad_node_t *p, int action)

int kad_op_stack(kad_node_t p, int action) / TODO: allow axis, as in TensorFlow */

int kad_op_select(kad_node_t *p, int action)

/********** 2D convolution **********/

static void conv_rot180(int d0, int d1, float x) / rotate/reverse a weight martix */

static void conv2d_move_1to3(int d[4], const float *x, float y) / convert the NCHW shape to the NHWC shape */

static void conv2d_add_3to1(int d[4], const float *y, float x) / convert the NHWC shape back to NCHW and add to another NCHW-shaped array */

int kad_op_conv2d(kad_node_t p, int action) / in the number-channel-height-width (NCHW) shape */

int kad_op_max2d(kad_node_t *p, int action)

static void conv1d_move_1to2(int d[3], const float *x, float *y)

static void conv1d_add_2to1(int d[3], const float *y, float *x)

int kad_op_conv1d(kad_node_t p, int action) / in the number-channel-width (NCW) shape */

int kad_op_max1d(kad_node_t *p, int action)

int kad_op_avg1d(kad_node_t *p, int action)

=============================

kad_saxpy_inlined 参数应修改为Ciphertext kad_vec_mul_sum 参数应修改为Ciphertext

kad_max2d : conv2d_gen_aux(不需修改)

conv2d_move_1to3:参数应修改为Ciphertext

conv2d_add_3to1: 参数应修改为Ciphertextkad_op_conv2d

kad_op_conv2d : 里面的中间变量需要修改,很多都是float conv2d_loop1 conv2d_loop2 都需要修改

conv1d_move_1to2:参数应修改为Ciphertext

conv1d_add_2to1: 参数应修改为Ciphertextkad_op_conv2d

kad_op_conv1d : 里面的中间变量需要修改,很多都是float conv1d_loop1 conv1d_loop2 都需要修改

Getting Started

# acquire source code and compile
git clone https://github.com/attractivechaos/kann
cd kann; make
# learn unsigned addition (30000 samples; numbers within 10000)
seq 30000 | awk -v m=10000 '{a=int(m*rand());b=int(m*rand());print a,b,a+b}' \
  | ./examples/rnn-bit -m7 -o add.kan -
# apply the model (output 1138429, the sum of the two numbers)
echo 400958 737471 | ./examples/rnn-bit -Ai add.kan -

Introduction

KANN is a standalone and lightweight library in C for constructing and training small to medium artificial neural networks such as multi-layer perceptrons, convolutional neural networks and recurrent neural networks (including LSTM and GRU). It implements graph-based reverse-mode automatic differentiation and allows to build topologically complex neural networks with recurrence, shared weights and multiple inputs/outputs/costs. In comparison to mainstream deep learning frameworks such as TensorFlow, KANN is not as scalable, but it is close in flexibility, has a much smaller code base and only depends on the standard C library. In comparison to other lightweight frameworks such as tiny-dnn, KANN is still smaller, times faster and much more versatile, supporting RNN, VAE and non-standard neural networks that may fail these lightweight frameworks.

KANN could be potentially useful when you want to experiment small to medium neural networks in C/C++, to deploy no-so-large models without worrying about dependency hell, or to learn the internals of deep learning libraries.

Features

  • Flexible. Model construction by building a computational graph with operators. Support RNNs, weight sharing and multiple inputs/outputs.

  • Efficient. Reasonably optimized matrix product and convolution. Support mini-batching and effective multi-threading. Sometimes faster than mainstream frameworks in their CPU-only mode.

  • Small and portable. As of now, KANN has less than 4000 lines of code in four source code files, with no non-standard dependencies by default. Compatible with ANSI C compilers.

Limitations

  • CPU only. As such, KANN is not intended for training huge neural networks.

  • Lack of some common operators and architectures such as batch normalization.

  • Verbose APIs for training RNNs.

Installation

The KANN library is composed of four files: kautodiff.{h,c} and kann.{h,c}. You are encouraged to include these files in your source code tree. No installation is needed. To compile examples:

make

This generates a few executables in the examples directory.

Documentations

Comments in the header files briefly explain the APIs. More documentations can be found in the doc directory. Examples using the library are in the examples directory.

A tour of basic KANN APIs

Working with neural networks usually involves three steps: model construction, training and prediction. We can use layer APIs to build a simple model:

kann_t *ann;
kad_node_t *t;
t = kann_layer_input(784); // for MNIST
t = kad_relu(kann_layer_dense(t, 64)); // a 64-neuron hidden layer with ReLU activation
t = kann_layer_cost(t, 10, KANN_C_CEM); // softmax output + multi-class cross-entropy cost
ann = kann_new(t, 0);                   // compile the network and collate variables

For this simple feedforward model with one input and one output, we can train it with:

int n;     // number of training samples
float **x; // model input, of size n * 784
float **y; // model output, of size n * 10
// fill in x and y here and then call:
kann_train_fnn1(ann, 0.001f, 64, 25, 10, 0.1f, n, x, y);

We can save the model to a file with kann_save() or use it to classify a MNIST image:

float *x;       // of size 784
const float *y; // this will point to an array of size 10
// fill in x here and then call:
y = kann_apply1(ann, x);

Working with complex models requires to use low-level APIs. Please see 01user.md for details.

A complete example

This example learns to count the number of "1" bits in an integer (i.e. popcount):

// to compile and run: gcc -O2 this-prog.c kann.c kautodiff.c -lm && ./a.out
#include <stdlib.h>
#include <stdio.h>
#include "kann.h"

int main(void)
{
	int i, k, max_bit = 20, n_samples = 30000, mask = (1<<max_bit)-1, n_err, max_k;
	float **x, **y, max, *x1;
	kad_node_t *t;
	kann_t *ann;
	// construct an MLP with one hidden layers
	t = kann_layer_input(max_bit);
	t = kad_relu(kann_layer_dense(t, 64));
	t = kann_layer_cost(t, max_bit + 1, KANN_C_CEM); // output uses 1-hot encoding
	ann = kann_new(t, 0);
	// generate training data
	x = (float**)calloc(n_samples, sizeof(float*));
	y = (float**)calloc(n_samples, sizeof(float*));
	for (i = 0; i < n_samples; ++i) {
		int c, a = kad_rand(0) & (mask>>1);
		x[i] = (float*)calloc(max_bit, sizeof(float));
		y[i] = (float*)calloc(max_bit + 1, sizeof(float));
		for (k = c = 0; k < max_bit; ++k)
			x[i][k] = (float)(a>>k&1), c += (a>>k&1);
		y[i][c] = 1.0f; // c is ranged from 0 to max_bit inclusive
	}
	// train
	kann_train_fnn1(ann, 0.001f, 64, 50, 10, 0.1f, n_samples, x, y);
	// predict
	x1 = (float*)calloc(max_bit, sizeof(float));
	for (i = n_err = 0; i < n_samples; ++i) {
		int c, a = kad_rand(0) & (mask>>1); // generating a new number
		const float *y1;
		for (k = c = 0; k < max_bit; ++k)
			x1[k] = (float)(a>>k&1), c += (a>>k&1);
		y1 = kann_apply1(ann, x1);
		for (k = 0, max_k = -1, max = -1.0f; k <= max_bit; ++k) // find the max
			if (max < y1[k]) max = y1[k], max_k = k;
		if (max_k != c) ++n_err;
	}
	fprintf(stderr, "Test error rate: %.2f%%\n", 100.0 * n_err / n_samples);
	kann_delete(ann); // TODO: also to free x, y and x1
	return 0;
}

Benchmarks

  • First of all, this benchmark only evaluates relatively small networks, but in practice, it is huge networks on GPUs that really demonstrate the true power of mainstream deep learning frameworks. Please don't read too much into the table.

  • "Linux" has 48 cores on two Xeno E5-2697 CPUs at 2.7GHz. MKL, NumPy-1.12.0 and Theano-0.8.2 were installed with Conda; Keras-1.2.2 installed with pip. The official TensorFlow-1.0.0 wheel does not work with Cent OS 6 on this machine, due to glibc. This machine has one Tesla K40c GPU installed. We are using by CUDA-7.0 and cuDNN-4.0 for training on GPU.

  • "Mac" has 4 cores on a Core i7-3667U CPU at 2GHz. MKL, NumPy and Theano came with Conda, too. Keras-1.2.2 and Tensorflow-1.0.0 were installed with pip. On both machines, Tiny-DNN was acquired from github on March 1st, 2017.

  • mnist-mlp implements a simple MLP with one layer of 64 hidden neurons. mnist-cnn applies two convolutional layers with 32 3-by-3 kernels and ReLU activation, followed by 2-by-2 max pooling and one 128-neuron dense layer. mul100-rnn uses two GRUs of size 160. Both input and output are 2-D binary arrays of shape (14,2) -- 28 GRU operations for each of the 30000 training samples.

Task Framework Machine Device Real CPU Command line
mnist-mlp KANN+SSE Linux 1 CPU 31.3s 31.2s mlp -m20 -v0
Mac 1 CPU 27.1s 27.1s
KANN+BLAS Linux 1 CPU 18.8s 18.8s
Theano+Keras Linux 1 CPU 33.7s 33.2s keras/mlp.py -m20 -v0
4 CPUs 32.0s 121.3s
Mac 1 CPU 37.2s 35.2s
2 CPUs 32.9s 62.0s
TensorFlow Mac 1 CPU 33.4s 33.4s tensorflow/mlp.py -m20
2 CPUs 29.2s 50.6s tensorflow/mlp.py -m20 -t2
Tiny-dnn Linux 1 CPU 2m19s 2m18s tiny-dnn/mlp -m20
Tiny-dnn+AVX Linux 1 CPU 1m34s 1m33s
Mac 1 CPU 2m17s 2m16s
mnist-cnn KANN+SSE Linux 1 CPU 57m57s 57m53s mnist-cnn -v0 -m15
4 CPUs 19m09s 68m17s mnist-cnn -v0 -t4 -m15
Theano+Keras Linux 1 CPU 37m12s 37m09s keras/mlp.py -Cm15 -v0
4 CPUs 24m24s 97m22s
1 GPU 2m57s keras/mlp.py -Cm15 -v0
Tiny-dnn+AVX Linux 1 CPU 300m40s 300m23s tiny-dnn/mlp -Cm15
mul100-rnn KANN+SSE Linux 1 CPU 40m05s 40m02s rnn-bit -l2 -n160 -m25 -Nd0
4 CPUs 12m13s 44m40s rnn-bit -l2 -n160 -t4 -m25 -Nd0
KANN+BLAS Linux 1 CPU 22m58s 22m56s rnn-bit -l2 -n160 -m25 -Nd0
4 CPUs 8m18s 31m26s rnn-bit -l2 -n160 -t4 -m25 -Nd0
Theano+Keras Linux 1 CPU 27m30s 27m27s rnn-bit.py -l2 -n160 -m25
4 CPUs 19m52s 77m45s
  • In the single thread mode, Theano is about 50% faster than KANN probably due to efficient matrix multiplication (aka. sgemm) implemented in MKL. As is shown in a previous micro-benchmark, MKL/OpenBLAS can be twice as fast as the implementation in KANN.

  • KANN can optionally use the sgemm routine from a BLAS library (enabled by macro HAVE_CBLAS). Linked against OpenBLAS-0.2.19, KANN matches the single-thread performance of Theano on Mul100-rnn. KANN doesn't reduce convolution to matrix multiplication, so MNIST-cnn won't benefit from OpenBLAS. We observed that OpenBLAS is slower than the native KANN implementation when we use a mini-batch of size 1. The cause is unknown.

  • KANN's intra-batch multi-threading model is better than Theano+Keras. However, in its current form, this model probably won't get alone well with GPUs.