/GraphEmd

Primary LanguageJupyter NotebookGNU Lesser General Public License v3.0LGPL-3.0

Graph Encoder Embedding


The Main folder contains the core GraphEncoder function in three languages:

  • MATLAB: GraphEncoder.m
  • Python: GraphEncoder.ipynb
  • R: GraphEncoder.R plus several extension functions in MATLAB: -- TemporalGraph.m -- UnsupGraph.m

The Data folder contains the public real data used in the reference papers.

The Experiments folder contains various experiments, plots, and auxiliary functions for the reference papers.


Basic Usage in MATLAB:

Given a graph A (either an nn square matrix or an s3 edgelist) and corresponding label vector Y (n*1 vector with K classes), the following outputs the supervised graph encoder embedding

Z=GraphEncoder(A,Y); where Z is the n*K vertex embedding.

Given a time-series graph A (stored in a 1*T cell, and each cell can be either square matrix of edgelist), and a label vector Y, the following outputs the temporal embedding:

[Z,Dynamic]=TemporalGraph(E,Y); where Dynamic contains the vertex, community, and graph dynamic in a 1*3 cell output.

Given a graph A and desired number of class K (or a range), the following outputs the unsupervised embedding:

[Z,Y]=UnsupGraph(A,K); where Z is the unsupervised vertex embedding, and Y is the estimated class label vector for each vertex.


References:

  1. C. Shen and Q. Wang and C. E. Priebe, "One-Hot Graph Encoder Embedding", IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(6):7933 - 7938, 2023. DOI: https://doi.org/10.1109/TPAMI.2022.3225073, arXiv:2109.13098

  2. C. Shen and Y. Park and C. E. Priebe, "Graph Encoder Ensemble for Simultaneous Vertex Embedding and Community Detection", in 2023 2nd International Conference on Algorithms, Data Mining, and Information Technology, pp. 13-18, ACM, 2023. DOI: https://doi.org/10.1145/3625403.3625407, arXiv:2301.11290

  3. C. Shen, J. Larson, H. Trinh, X. Qin, Y. Park, and C. E. Priebe, "Discovering Communication Pattern Shifts in Large-Scale Labeled Networks using Encoder Embedding and Vertex Dynamics", IEEE Transactions on Network Science and Engineering, 11(2):2100 - 2109, 2024. DOI: https://doi.org/10.1109/TNSE.2023.3337600, arXiv:2305.02381.

  4. C. Shen, C. E. Priebe, J. Larson, H. Trinh, "Synergistic Graph Fusion via Encoder Embedding", submitted, 2023. arXiv:2303.18051