csinva
Senior researcher @Microsoft interpreting ML models in science and medicine. PhD from UC Berkeley.
Senior researcherMicrosoft research
Pinned Repositories
clinical-rule-development
Building and vetting clinical decision rules.
csinva.github.io
Slides, paper notes, class notes, blog posts, and research on ML π, statistics π, and AI π€.
gan-vae-pretrained-pytorch
Pretrained GANs + VAEs + classifiers for MNIST/CIFAR in pytorch.
gpt-paper-title-generator
Generating paper titles (and more!) with GPT trained on data scraped from arXiv.
hierarchical-dnn-interpretations
Using / reproducing ACD from the paper "Hierarchical interpretations for neural network predictions" π§ (ICLR 2019)
imodels
Interpretable ML package π for concise, transparent, and accurate predictive modeling (sklearn-compatible).
imodelsX
Interpret text data using LLMs (scikit-learn compatible).
interpretable-embeddings
Interpretable text embeddings by asking LLMs yes/no questions (NeurIPS 2024)
iprompt
Finding semantically meaningful and accurate prompts.
automated-brain-explanations
Generating and validating natural-language explanations for the brain.
csinva's Repositories
csinva/imodels
Interpretable ML package π for concise, transparent, and accurate predictive modeling (sklearn-compatible).
csinva/csinva.github.io
Slides, paper notes, class notes, blog posts, and research on ML π, statistics π, and AI π€.
csinva/gan-vae-pretrained-pytorch
Pretrained GANs + VAEs + classifiers for MNIST/CIFAR in pytorch.
csinva/imodelsX
Interpret text data using LLMs (scikit-learn compatible).
csinva/gpt-paper-title-generator
Generating paper titles (and more!) with GPT trained on data scraped from arXiv.
csinva/iprompt
Finding semantically meaningful and accurate prompts.
csinva/interpretable-embeddings
Interpretable text embeddings by asking LLMs yes/no questions (NeurIPS 2024)
csinva/tree-prompt
Tree prompting: easy-to-use scikit-learn interface for improved prompting.
csinva/matching-with-gans
Matching in GAN latent space for better bias benchmarking and semantic image editing. πΆπ»π§πΎπ©πΌβπ¦°π±π½ββοΈπ΄πΎ
csinva/data-viz-utils
Functions for easily making publication-quality figures with matplotlib.
csinva/mdl-complexity
MDL Complexity computations and experiments from the paper "Revisiting complexity and the bias-variance tradeoff".
csinva/cookiecutter-ml-research
A logical, reasonably standardized, but flexible project structure for conducting ml research πͺ
csinva/clinical-rule-development
Building and vetting clinical decision rules.
csinva/clinical-rule-survey
Analyzing clinical decision instruments through the lens of data and large language models.
csinva/tree-prompt-experiments
Create a tree of prompts during training that improves efficiency and accuracy.
csinva/imodels-data
Preprocessed data for various popular tabular datasets to go along with imodels.
csinva/pybaobab-fork
Fork of pybaobabdt adding more customization.
csinva/fmri
Experiments with language fMRI data from Alex Huth lab
csinva/tpr-fmri
csinva/analyzing-patient-perspectives
Analyzing interview data from the PediDOSE EFIC interviews using LLMs.
csinva/news-title-bias
Scraping and analyzing political bias in news titles using data from allsides.com
csinva/Conference-Acceptance-Rate
Acceptance rates for the major AI conferences
csinva/csinva
readme
csinva/matrix-completion-llm
Training LLMs for matrix completion
csinva/awesome-llm-interpretability
A curated list of Large Language Model (LLM) Interpretability resources.
csinva/context-review
csinva/gam-experiments
csinva/llm-guided-data-explanation
Explaining data to humans with linear models + LLM hints.
csinva/r2d3-decision-tree
A clone of the animated decision tree at http://www.r2d3.us/ in React, React-Motion, and d3
csinva/tabpfn-v2-finetune
Code for finetuning TabPFN on one downstream tabular dataset.