Fast, differentiable sorting and ranking in PyTorch.
Pure PyTorch implementation of Fast Differentiable Sorting and Ranking (Blondel et al.). Much of the code is copied from the original Numpy implementation at google-research/fast-soft-sort, with the isotonic regression solver rewritten as a PyTorch C++ and CUDA extension.
pip install torchsort
To build the CUDA extension you will need the CUDA toolchain installed. If you
want to build in an environment without a CUDA runtime (e.g. docker), you will
need to export the environment variable
TORCH_CUDA_ARCH_LIST="Pascal;Volta;Turing;Ampere"
before installing.
Conda Installation
On some systems the package my not compile with `pip` install in conda environments. If this happens you may need to:- Install g++ with
conda install -c conda-forge gxx_linux-64=9.40
- Run
export CXX=/path/to/miniconda3/envs/env_name/bin/x86_64-conda_cos6-linux-gnu-g++
- Run
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/path/to/miniconda3/lib
pip install --force-reinstall --no-cache-dir --no-deps torchsort
Thanks to @levnikmyskin, @sachit-menon for pointing this out!
torchsort
exposes two functions: soft_rank
and soft_sort
, each with
parameters regularization
("l2"
or "kl"
) and regularization_strength
(a
scalar value). Each will rank/sort the last dimension of a 2-d tensor, with an
accuracy dependant upon the regularization strength:
import torch
import torchsort
x = torch.tensor([[8, 0, 5, 3, 2, 1, 6, 7, 9]])
torchsort.soft_sort(x, regularization_strength=1.0)
# tensor([[0.5556, 1.5556, 2.5556, 3.5556, 4.5556, 5.5556, 6.5556, 7.5556, 8.5556]])
torchsort.soft_sort(x, regularization_strength=0.1)
# tensor([[-0., 1., 2., 3., 5., 6., 7., 8., 9.]])
torchsort.soft_rank(x)
# tensor([[8., 1., 5., 4., 3., 2., 6., 7., 9.]])
Both operations are fully differentiable, on CPU or GPU:
x = torch.tensor([[8., 0., 5., 3., 2., 1., 6., 7., 9.]], requires_grad=True).cuda()
y = torchsort.soft_sort(x)
torch.autograd.grad(y[0, 0], x)
# (tensor([[0.1111, 0.1111, 0.1111, 0.1111, 0.1111, 0.1111, 0.1111, 0.1111, 0.1111]],
# device='cuda:0'),)
Spearman's rank coefficient is a very useful metric for measuring how monotonically related two variables are. We can use Torchsort to create a differentiable Spearman's rank coefficient function so that we can optimize a model directly for this metric:
import torch
import torchsort
def spearmanr(pred, target, **kw):
pred = torchsort.soft_rank(pred, **kw)
target = torchsort.soft_rank(target, **kw)
pred = pred - pred.mean()
pred = pred / pred.norm()
target = target - target.mean()
target = target / target.norm()
return (pred * target).sum()
pred = torch.tensor([[1., 2., 3., 4., 5.]], requires_grad=True)
target = torch.tensor([[5., 6., 7., 8., 7.]])
spearman = spearmanr(pred, target)
# tensor(0.8321)
torch.autograd.grad(spearman, pred)
# (tensor([[-5.5470e-02, 2.9802e-09, 5.5470e-02, 1.1094e-01, -1.1094e-01]]),)
torchsort
and fast_soft_sort
each operate with a time complexity of O(n log
n), each with some additional overhead when compared to the built-in
torch.sort
. With a batch size of 1 (see left), the Numba JIT'd forward pass of
fast_soft_sort
performs about on-par with the torchsort
CPU kernel, however
its backward pass still relies on some Python code, which greatly penalizes its
performance.
Furthermore, the torchsort
kernel supports batches, and yields much better
performance than fast_soft_sort
as the batch size increases.
The torchsort
CUDA kernel performs quite well with sequence lengths under
~2000, and scales to extremely large batch sizes. In the future the
CUDA kernel can likely be further optimized to achieve performance closer to that of the
built in torch.sort
.
@inproceedings{blondel2020fast,
title={Fast differentiable sorting and ranking},
author={Blondel, Mathieu and Teboul, Olivier and Berthet, Quentin and Djolonga, Josip},
booktitle={International Conference on Machine Learning},
pages={950--959},
year={2020},
organization={PMLR}
}