Author: Zeyu Li zyli@cs.ucla.edu
This is the Repo for Interpretable Click-through Rate Prediction through Hierarchical Attention. Please find our paper using the following citation
@inproceedings{han2019all,
title={Interpretable Click-Through Rate Prediction through Hierarchical Attention},
author={Li, Zeyu and Cheng, Wei and Chen, Yang and Chen, Haifeng and Wang, Wei},
booktitle={Proceedings of the Thirteenth ACM International Conference on Web Search and Data Mining},
year={2020},
organization={ACM}
}
Please check requirements.txt
for dependent packages or run
$ pip install -r requirements.txt
- Create following structure in the folder
interhat
|-- data
| |-- raw
| | |-- criteoDAC (put unzipped data)
| | |-- avazu (put unzipped data)
| |-- parse
|-- interhat
|-- ...
- Run preprocess
$ python interhat/preprocess.py [dataset] [n_buckets]
Run run.sh
as an example.
This section introduces the datasets.
$ curl -O http://azuremlsampleexperiments.blob.core.windows.net/criteo/day_{'seq -s ',' 0 23'}.gz
An useful repo: https://github.com/rambler-digital-solutions/criteo-1tb-benchmark#task-and-data
Avazu dataset is from Kaggle: https://www.kaggle.com/c/avazu-ctr-prediction
Frappe: https://github.com/hexiangnan/neural_factorization_machine/tree/master/data/frappe