Spatio-Temporal Mixture-of-Experts

This is the code of ST-MoE for paper 'ST-MoE: Spatio-Temporal Mixture-of-Experts for Debiasing in Traffic Prediction'. We present here the code of the ST-MoE framework and use Graph WaveNet as the base model example.

Requirements

  • python 3
  • see requirements.txt

Data Preparation

  1. Download METR-LA and PEMS-BAY data from Google Drive or Baidu Yun links provided by DCRNN.

# Create data directories
mkdir -p data/{METR-LA,PEMS-BAY}

# METR-LA
python generate_training_data.py --output_dir=data/METR-LA --traffic_df_filename=data/metr-la.h5

# PEMS-BAY
python generate_training_data.py --output_dir=data/PEMS-BAY --traffic_df_filename=data/pems-bay.h5

Train Commands

Base model train and predict:

python train.py

ST-MoE train and predict:

python main_moe.py