Implementation of "On Function-Coupled Watermarks for Deep Neural Networks"
Jupyter Notebook
Implementation of "On Function-Coupled Watermarks for Deep Neural Networks"
Datasets:
CIFAR10
CIFAR100
MNIST
Tiny-ImageNet
Network Structures:
LeNet-5
VGG-16
ResNet-18
Models:
LeNet-5 on MNIST
VGG-16 on CIFAR-100
ResNet-18 on CIFAR-10 and Tiny-ImageNet
Script Structure and Description:
Main folder
|--checkpoint
|--checkpoint list
|--data
|--data list
|--models
|--VGG16
|--ResNet
|--LeNet
|--...
|--pytorch_grad_cam
|--going to delete
--data_loader.py (load data)
--finetune-with-same-dataset.py (script of finetuning a model)
--generate-finetune-data-same-dataset.py (script of generating data for finetuning)
--prune_model.py (prune a model)
--pruning.py (dependent library for pruning)
--select_combine_img.py (generate wm images for embedding watermarks)
--select_wm_images.py (select wm images for validation)
--show_tiny_imagenet.ipynb (show something)
--test_acc.py (test the benign accuracy of a model)
--test_injection.py (test the wm performance)
--tinyimagenet-wm.py (core script to train a model for wm embedding)
--tinyimagenet.py (train a clean model)