/HandGRaF

Primary LanguagePythonMIT LicenseMIT

HandGRaF-Net: Hand Graph Reasoning and Folding

Wencan Cheng, Jong Hwan Ko

This is the implementation of the manuscript

  1. Prepare dataset

    please download the MSRA dataset

    follow the instructions in the './preprocess_msra/' for datasets preprocessing

  2. Install PointNet++ CUDA operations

    follow the instructions in the './train_eval/pointnet2' for installation

  3. Evaluate

    go to "train_eval" directory

    execute python3 eval_msra.py --model [saved model name] --test_path [testing set path]

    for example python3 eval_msra.py --model best_model.pth --test_path ../data/msra_preprocess/

    we provided the pre-trained models ('./results/msra_handgraf_adam_rotaug/P0/best_model.pth') for MSRA

  4. If a new training process is needed, please execute the following instructions after step 1 and 2 are completed

    go to "train_eval" directory

    . for training MSRA execute python3 train_msra_adamw_rotaug.py --dataset_path [MSAR dataset path] example python3 train_msra_adamw_rotaug.py --dataset_path ../data/msra_preprocess/