Official Source code of "One-Shot Adaptation of GAN in Just One CLIP" accepted to Transactions on Pattern Analysis and Machine Intelligence (TPAMI)
Pytorch 1.7.1, Python 3.6
$ conda create -n oneshotCLIP python=3.6
$ conda install --yes -c pytorch pytorch=1.7.1 torchvision cudatoolkit=11.0
$ pip install ftfy regex tqdm
$ conda install -c anaconda git
$ conda install -c conda-forge packaging
$ pip install git+https://github.com/openai/CLIP.git
Before training, please download the pre-trained models on large datasets:
LINK: FFHQ
To train the model, run
python train_oneshot.py --exp exp1 --data_path $DATA_PATH$ --ckpt $SRC_MODEL_PATH$
$DATA_PATH$
is a directory for single-shot target image
$SRC_MODEL_PATH$
is a path for source domain pre-trained model.
Default: ./pretrained_model/stylegan2-ffhq-config-f.pt
--exp is for checkpoint directory name
For human face dataset training, download portrait dataset in LINK
To test the model with adapted generator,
python test_oneshot.py --exp exp1 --ckpt $TARGET_MODEL_PATH$ --ckpt_source $SOURCE_MODEL_PATH$
$TARGET_MODEL_PATH$
is path for adapted target domain model.
$SOURCE_MODEL_PATH$
is path for source domain model. Default: ./pretrained_model/stylegan2-ffhq-config-f.pt
For testing, we provide several adapted models
For testing on real images, we provide demo on Google Colab .