PyTorch Implementation for 'Learning Visual Importance for Graphic Designs and Data Visualizations'
This repo implements training and testing models for [1] by PyTorch, and based on Caffe codes authors of [1] provide.
Dataset
To download datasets, GDI (Graphic Design Importance) Dataset and Massvis (Visualization) Dataset, see authors' repo.
Testing
Usage:
python visimportance.py --dataset <dataset_name> # name of dataset, gdi or massvis (default: gdi)
--dataset_dir <directory_path> # dataset directory
--fcn_type <fcn_type> # FCN type, fcn32 or fcn16 (default: gdi)
--overlaid_img_dir <directory_path> # output directory path for images with heatpmap overlaid onto input images
--pretrained_model <file_path> # pretrained model converted from Caffe models
--gpu <device_id> # GPU id (default: 0)
--eval_only # evaluation only
Pretrained models
The followings are PyTorch pretrained models. Specify the file path to --pretrained_model
option.
gdi_fcn32.pth
FCN-32s model for GDI (Graphic Design Importance) Dataset, linkgdi_fcn16.pth
FCN-16s model for GDI (Graphic Design Importance) Dataset, linkmassvis_fcn32.pth
FCN-32s model for Massvis (Visualization) Dataset, link
These models are converted from Caffe models authors of [1] provide.
training
Usage:
python visimportance.py --dataset <dataset_name> # name of dataset, gdi or massvis (default: gdi)
--dataset_dir <directory_path> # dataset directory
--fcn_type <fcn_type> # FCN type, fcn32 or fcn16 (default: gdi)
--overlaid_img_dir <directory_path> # output directory path for images with heatpmap overlaid onto input images
--pretrained_model <file_path> # pretrained model converted from Caffe models
--gpu <device_id> # GPU id (default: 0)
--resume <file_path> # checkpoint file to be loaded when retraining models
--checkpoint_dir <directory_path> # checkpoint file to be saved in each epoch
--config <configuration_id> # configuration for training where several hyperparameters are defined
Pretrained models
The followings are PyTorch VOC FCN-32s pretrained model.
Specify the file path to --pretrained_model
option when you newly start to train models for GDI/Massvis datasets.
voc_fcn32.pth
FCN-32s model for GDI (Graphic Design Importance) Dataset, link
This model is converted from Caffe models authors of [1] provide.
Examples
GDI
- Ground truth
- Predicted by FCN-16s
Massvis
- Ground truth
- Predicted by FCN-32s
References
- Zoya Bylinskii and Nam Wook Kim and Peter O'Donovan and Sami Alsheikh and Spandan Madan and Hanspeter Pfister and Fredo Durand and Bryan Russell and Aaron Hertzmann, Learning Visual Importance for Graphic Designs and Data Visualizations, Proceedings of the 30th Annual ACM Symposium on User Interface Software & Technology, 2017. authors' site, arXiv