/d0fractal

绘制分形图像,draw fractal images

Primary LanguagePython

d0fractal

绘制分形图像

Mandelbrot分形图像

根据Mandelbrot集绘制分形图像。Mandelbrot集由一个复变函数f(z) = z2 + c生成,其中c为当前坐标点,z从0开始迭代。

Draw fractal image using Mandelbrot set. The Mandelbrot set is generated by a complex function f(z) = z2 + c, where c is current coordinate point, and z iterates from 0.

Julia分形图像

根据Julia集绘制分形图像。Julia集由一个复变函数f(z) = z2 + c生成,其中c为常数,z从当前坐标点开始迭代。

Draw fractal images using Julia set. The Julia set is generated by a complex function f(z) = z2 + c, where c is a constant, and z iterates from current coordinate point.

c = (0.34-0.05i)

c = (-0.52+0.62i)

c = (-0.54-0.5255i)

c = (-0.55+0.64i)

c = (0.338+0.489i)

c = (0.365-0.37i)

c = (0.3593+0.5103i)

c = (0.42413+0.20753i)

c = -1.38

c = 1i

Koch曲线分形图像

一个边长为1的等边三角形,取每边中间的三分之一,接上去一个形状完全相似的但边长为其三分之一的三角形,结果是一个六角形。取六角形的每个边做同样的变换,即在中间三分之一接上更小的三角形,以此重复,直至无穷。

The Koch snowflake can be constructed by starting with an equilateral triangle, then recursively altering each line segment as follows:

  1. divide the line segment into three segments of equal length.
  2. draw an equilateral triangle that has the middle segment from step 1 as its base and points outward.
  3. remove the line segment that is the base of the triangle from step 2.

谢尔宾斯基地毯分形图像

将一个实心正方形划分为的9个小正方形,去掉中间的小正方形,再对余下的小正方形重复这一操作便能得到谢尔宾斯基地毯。

Divide a solid square into 9 small squares, remove the middle square, and repeat the operation for remaining small squares to get the Sierpinski carpet.