Data-Free Network Quantization With Adversarial Knowledge Distillation PyTorch (Reproduced)
- Pytorch 1.4.0
- Python 3.6
- Torchvision 0.5.0
- tensorboard
- tensorboardX
CUDA_VISIBLE_DEVICES=0 python main.py --dataset=cifar10 --alpha=0.01 --do_warmup=True --do_Ttrain=True
The generated images and a trained student network from Knowledge distillation will be saved in ./outputs
(default) folder.
if you did train the teacher network, let argument "do_Ttrain" be False like as belows:
CUDA_VISIBLE_DEVICES=0 python main.py --dataset=cifar10 --alpha=0.01 --do_warmup=True --do_Ttrain=False
Arguments:
dataset
- Choose a dataset name- [cifar10, cifar100]
data
- dataset pathteacher_dir
- save path for teachern_epochs
- Epochsiter
- Iterationsbatch_size
- Size of the batcheslr_G
- learning rate for generatorlr_S
- learning rate for studentalpha
- Alpha valuelatent_dim
- Dimensionality of the latent spaceimg_size
- Size of each image dimensionchannels
- Number of image channelssaved_img_path
- Save path for generated imagessaved_model_path
- Save path for trained stduentdo_warmup
- Do warm-up??do_Ttrain
- Do train teacher network??
Choi, Yoojin, et al. "Data-free network quantization with adversarial knowledge distillation." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. 2020.