The implementation for "Skeleton-Based Action Recognition with Shift Graph Convolutional Network" (CVPR2020 oral). Shift-GCN is a lightweight skeleton-based action recognition model, which exceeds state-of-the-art methods with 10x less FLOPs.
- PyTorch 0.4.1
- Cuda 9.0
- g++ 5.4.0
cd ./model/Temporal_shift
bash run.sh
-
Download the raw data of NTU-RGBD and NTU-RGBD120. Put NTU-RGBD data under the directory
./data/nturgbd_raw
. Put NTU-RGBD120 data under the directory./data/nturgbd120_raw
. -
For NTU-RGBD, preprocess data with
python data_gen/ntu_gendata.py
. For NTU-RGBD120, preprocess data withpython data_gen/ntu120_gendata.py
. -
Generate the bone data with
python data_gen/gen_bone_data.py
. -
Generate the motion data with
python data_gen/gen_motion_data.py
.
-
NTU X-view
python main.py --config ./config/nturgbd-cross-view/train_joint.yaml
python main.py --config ./config/nturgbd-cross-view/train_bone.yaml
python main.py --config ./config/nturgbd-cross-view/train_joint_motion.yaml
python main.py --config ./config/nturgbd-cross-view/train_bone_motion.yaml
-
NTU X-sub
python main.py --config ./config/nturgbd-cross-subject/train_joint.yaml
python main.py --config ./config/nturgbd-cross-subject/train_bone.yaml
python main.py --config ./config/nturgbd-cross-subject/train_joint_motion.yaml
python main.py --config ./config/nturgbd-cross-subject/train_bone_motion.yaml
-
For NTU120, change the dataset path in config files, and change
num_class
in config files from 60 to 120.
To ensemble the results of 4 streams. Change models name in ensemble.py
depending on your experiment setting. Then run python ensemble.py
.
We release several trained models:
Model | Dataset | Setting | Top1(%) |
---|---|---|---|
./save_models/ntu_ShiftGCN_joint_xview.pt | NTU-RGBD | X-view | 95.1 |
./save_models/ntu_ShiftGCN_joint_xsub.pt | NTU-RGBD | X-sub | 87.8 |
./save_models/ntu120_ShiftGCN_joint_xsetup.pt | NTU-RGBD120 | X-setup | 83.2 |
./save_models/ntu120_ShiftGCN_joint_xsub.pt | NTU-RGBD120 | X-sub | 80.9 |
If you find this model useful for your research, please use the following BibTeX entry.
@inproceedings{cheng2020shiftgcn,
title = {Skeleton-Based Action Recognition with Shift Graph Convolutional Network},
author = {Ke Cheng and Yifan Zhang and Xiangyu He and Weihan Chen and Jian Cheng and Hanqing Lu},
booktitle = {Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
year = {2020},
}