competition page: https://www.guruguru.science/competitions/24
- 12 th place solution for AtmaCup 17
- Task: predict the item's recommendation from data including review text.
- solution
- please see solution.md.
- Discussion post version (Ja): https://www.guruguru.science/competitions/24/discussions/2a97a005-de13-4e2b-87f4-1b2b35d8011e/
-
Clone this repository
-
Download datesets from the competition page
-
unzip the datasets and put them in the
input
directory -
Docker build and Run
docker compose up -d # to interact with the container docker compose local-dev exec bash
-
run the following command
make setup python -m src.exp.exp002.train && python -m src.exp.exp002.test python -m src.exp.exp004.train && python -m src.exp.exp004.test python -m src.exp.exp006.train && python -m src.exp.exp006.test python -m ensemble
[1] takaito, [atmaCup17] Tutorial Notebook① DeBERTa Large Modelの学習 (少し手を加えるとLB: 0.9718), https://www.guruguru.science/competitions/24/discussions/4aee3312-ba40-4934-9035-22c7d2b51c09/
[2] nishimoto, 2023-24年のKaggleコンペから学ぶ、NLPコンペの精度の上げ方, https://zenn.dev/nishimoto/articles/974f2a445f9d74
[3] AI SHIFT, 【AI Shift/Kaggle Advent Calendar 2022】Kaggleで学んだBERTをfine-tuningする際のTips④〜Adversarial Training編〜, https://www.ai-shift.co.jp/techblog/2985