/AIC2024-TRACK4-TEAM15

[CVPRW 2024] Low-Light Image Enhancement Framework for Improved Object Detection in Fisheye Lens Datasets

Primary LanguagePython

[CVPRW 2024] Low-Light Image Enhancement Framework for Improved Object Detection in Fisheye Lens Datasets

Introduction

This repo contains Team 15 (SKKU-NDSU) code for the Track 4 submission to the CVPR AI City Challenge 2024. We propose a data preprocessing framework called the Low-Light Image Enhancement Framework. This framework utilizes a transformer-based image enhancement technique, NAFNet, to increase image clarity by removing blurriness and the use of GSAD to convert nighttime images (low illumination) to daytime images (high illumination) to improve accuracy in object detection for fisheye images during model training. To further improve the accuracy of object detection during inference, the study employed a super-resolution postprocessing technique, DAT, to increase the pixels of the images for enhanced object detection, as well as an ensemble model technique for robust detection.

Proposed Approach

Our methodology is visually encapsulated in the figures below, demonstrating our comprehensive approach and exemplary results. figure

figure2

Updates

Our paper is published on CVPRw2024!

Installation

Here is the list of libraries used in this project:

Note: For optimal performance, we recommend setting up separate environments for each library. Exported conda environments are provided in the conda_envs directory. The proposed approach is inference on Intel Core i9, and NVIDIA 4090 24GB and 64GB RAM. Models are trained on Intel Xeon Silver 4210R, and 2 NVIDIA RTX A6000 48GB and 126GB RAM

Preprocessing

Download the FishEye8K Dataset

Download the FishEye8K dataset from the AI City Challenge, add to the folder ./sample_dataset. Unzip Fisheye8K_all_including_train&test_update_2024Jan.zip

7z x Fisheye8K_all_including_train\&test_update_2024Jan.zip

Download CVPR test set (1000 images) from the AI City Challenge, add to the folder ./sample_dataset/CVPR_test.

Receive the following directory structure:

./sample_dataset/CVPR_test
./sample_dataset/Fisheye8K_all_including_train&test
|
|---train
|   |---annotations
|   |---images
|   |---labels
|   |---train.json
|___test
|   |---annotations
|   |---images
|   |---labels
|   |---test.json

Generate JSON Annotation Files

Modify the following paths in generate_org_json.py to generate the JSON annotation files:

DIR = '{ABSOLUTE_DIR}/AIC2024-TRACK4-TEAM15/sample_dataset/Fisheye8K_all_including_train&test'
TRAIN_ANNOTATION_PATH = '{ABSOLUTE_DIR}/AIC2024-TRACK4-TEAM15/sample_dataset/Fisheye8K_all_including_train&test/train/annotations'
VAL_ANNOTATION_PATH = '{ABSOLUTE_DIR}/AIC2024-TRACK4-TEAM15/sample_dataset/Fisheye8K_all_including_train&test/test/annotations'

Note: we used absolute paths in the code. Please modify the paths accordingly.

python src/preprocessing/generate_org_json.py

Receive the following files:

train_raw_fisheye8k.json
val_raw_fisheye8k.json

Image Enhancement using NAFNet

We directly use the pre-trained model NAFNet-REDS-width64 from the NAFNet official Github repo.

Download the pre-trained model from NAFNet-REDS-width64.pth and add to the folder ./src/lib/infer_NAFNet/experiments/pretrained_models/.

Modify the following paths in NAFNet-width64.yml to add weight for NAFNet.

{ABSOLUTE_DIR}/AIC2024-TRACK4-TEAM15/src/lib/infer_NAFNet/experiments/pretrained_models/NAFNet-REDS-width64.pth

Modify the following paths in nafnet_inference.py to generate the enhanced images:

opt_path =  '{ABSOLUTE_DIR}/AIC2024-TRACK4-TEAM15/src/lib/infer_NAFNet/options/test/REDS/NAFNet-width64.yml'

TRAIN_DIR = "{ABSOLUTE_DIR}/AIC2024-TRACK4-TEAM15/sample_dataset/Fisheye8K_all_including_train&test/train/images"
VAL_DIR = "{ABSOLUTE_DIR}/AIC2024-TRACK4-TEAM15/sample_dataset/Fisheye8K_all_including_train&test/test/images"
TEST_DIR = "{ABSOLUTE_DIR}/AIC2024-TRACK4-TEAM15/sample_dataset/CVPR_test"

TRAIN_SAVE_DIR = "{ABSOLUTE_DIR}/AIC2024-TRACK4-TEAM15/sample_dataset/NAFNet_Output/train"
VAL_SAVE_DIR = "{ABSOLUTE_DIR}/AIC2024-TRACK4-TEAM15/sample_dataset/NAFNet_Output/val"
TEST_SAVE_DIR = "{ABSOLUTE_DIR}/AIC2024-TRACK4-TEAM15/sample_dataset/NAFNet_Output/cvpr_test"
python src/lib/infer_NAFNet/nafnet_inference.py

Convert to day-light images using GSAD

Pre-trained model GSAD is used to convert the night images to day-like images. Pre-trained model on LOLv2Syn dataset is used.

Download the pre-trained model from lolv2_syn_gen.pth, and add to ./src/lib/infer_GSAD/checkpoints

cd ./src/lib/infer_GSAD

# Converting night time train images
python test_unpaired.py --input {ABSOLUTE_DIR}/AIC2024-TRACK4-TEAM15/sample_dataset/NAFNet_Output/train/ --save_dir {ABSOLUTE_DIR}/AIC2024-TRACK4-TEAM15/sample_dataset/GSAD_Output/train
# Converting night time val images
python test_unpaired.py --input {ABSOLUTE_DIR}/AIC2024-TRACK4-TEAM15/sample_dataset/NAFNet_Output/val/ --save_dir{ABSOLUTE_DIR}/AIC2024-TRACK4-TEAM15/sample_dataset/GSAD_Output/val

Converted images will be saved in the following directories:

./sample_dataset/GSAD_Output/train
./sample_dataset/GSAD_Output/val

Generate the final json for training

Modify the paths in generate_final_json.py to generate the final JSON annotation files:

cd src/preprocessing
python generate_final_json.py

Training YOLOv9

Copy train, validation images and labels (.txt file from original FishEye8K) to the following directories:

"{ABSOLUTE_DIR}/AIC2024-TRACK4-TEAM15/src/preprocessing/images"
"{ABSOLUTE_DIR}/AIC2024-TRACK4-TEAM15/src/preprocessing/labels"

Note: val and test folder using validation images.

Run yolov9_convert2txt.ipynb to export train_all.txt, train_txt_org.txt, test_txt_org.txt files.

Modify nafnet_trainorg yaml for training.

train: '{ABSOLUTE_DIR}/AIC2024-TRACK4-TEAM15/src/preprocessing/train_txt_org.txt'
val: '{ABSOLUTE_DIR}/AIC2024-TRACK4-TEAM15/src/preprocessing/val_txt_org.txt'
test: '{ABSOLUTE_DIR}/AIC2024-TRACK4-TEAM15/src/preprocessing/test_txt_org.txt'

Download and install yolov9 from YOLOv9, train yolov9e on the FishEye8K dataset.

python -m torch.distributed.launch --nproc_per_node 2 --master_port 9092 train_dual.py --workers 16 --device 0,1 --sync-bn --batch 4 --data data/nafnet_trainorg.yaml --img 1280 --cfg models/detect/yolov9-e.yaml --weights 'yolov9-e.pt' --name nafnet_yolov9e_1280_trainorg --hyp hyp.scratch-high.yaml --min-items 0 --epochs 500 --close-mosaic 15

For training raw images, copy images directly from FishEye8K dataset. For training enhanced images, copy images from the NAFNet_Output directory.

Training YOLOv8

Similarly, clone and install yolov8. Modify nafnet_all_default.yaml

train: '{ABSOLUTE_DIR}/AIC2024-TRACK4-TEAM15/src/preprocessing/train2017/images'
val: '{ABSOLUTE_DIR}/AIC2024-TRACK4-TEAM15/src/preprocessing/val2017/images'

nc: 5

# Classes
names: ['Bus','Bike','Car','Pedestrian','Truck']

Train model with the following command:

yolo task=detect mode=train model=yolov8x.pt imgsz=1280 data=nafnet_all_default.yaml epochs=400 batch=8 name=jan_nafnet_yolov8x_default_1280 --device=0,1

Training Co-DETR

Here we show how to train the CO-DETR model on the FishEye8K dataset.

Modify ann_file for train and val in ./src/lib/train_mmdet/projects/CO-DETR/configs/codino/r50_lsj.py

ann_file='{ABSOLUTE_DIR}/AIC2024-TRACK4-TEAM15/src/preprocessing/nafnet_val_night2day.json'

Co-DETR model is trained on 2 GPUs.

cd src/lib/train_mmdet
sh tools/dist_train.sh projects/CO-DETR/configs/codino/swinL_detr_o365_coco.py 2

Using ./src/preprocessing/split_kfolds.ipynb for generating k-folds for training and validation.

Similarly, modify ann_file in ./src/lib/train_mmdet/projects/CO-DETR/configs/codino/r50_lsj.py for training and validation.

Super Resolution

We use the DAT algorithm to perform super-resolution on the testing images. Each test image is scaled by a factor of 4.

Download the pre-trained model from DAT_x4.pth and add to ./src/lib/infer_DAT/experiments/pretrained_models

Modify dataroot_lq and pretrain_network_g in ./src/lib/infer_DAT/options/Test/convert_CVPR_test.yaml


cd src/lib/infer_DAT

python basicsr/test.py -opt options/Test/convert_CVPR_test.yaml

Output of CVPR test images will be saved in the following directory:

{ABSOLUTE_DIR}/AIC2024-TRACK4-TEAM15/src/lib/infer_DAT/results/test_single_x4/visualization/SingleCVPR_test.yaml

Inference for submission on CVPR test set

Download all pre-trained models in here and put them in the following directories:

./src/pretrained_weights

Modify the following paths in inference4submission.py to generate the final submission file:

TEST_DIR = '{ABSOLUTE_DIR}/AIC2024-TRACK4-TEAM15/src/lib/infer_DAT/results/test_single_x4/visualization'
ORG_CVPR_DIR = '{ABSOLUTE_DIR}/AIC2024-TRACK4-TEAM15/sample_dataset/CVPR_test'
python src/inference4submission.py

Ciation

@InProceedings{Tran_2024_CVPR,
    author    = {Tran, Dai Quoc and Aboah, Armstrong and Jeon, Yuntae and Shoman, Maged and Park, Minsoo and Park, Seunghee},
    title     = {Low-Light Image Enhancement Framework for Improved Object Detection in Fisheye Lens Datasets},
    booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops},
    month     = {June},
    year      = {2024},
    pages     = {7056-7065}
}

Contact

If you have any questions, please feel free to contact Dai Tran (daitran@skku.edu).