/TrackTacular

Official Code for "Lifting Multi-View Detection and Tracking to the Bird’s Eye View"

Primary LanguagePython

TrackTacular 🐙

Lifting Multi-View Detection and Tracking to the Bird’s Eye View

Torben Teepe, Philipp Wolters, Johannes Gilg, Fabian Herzog, Gerhard Rigoll

arxiv

PWC PWC PWC

Tip

This work is an extension of your previous work EarlyBird 🦅. Feel free to check it out and extend our multi-view object detection and tracking pipeline on other datasets!

Overview

Usage

Getting Started

  1. Install PyTorch with CUDA support
    pip3 install torch torchvision --index-url https://download.pytorch.org/whl/cu118
  2. Install mmcv with CUDA support
    pip install mmcv==2.0.0 -f https://download.openmmlab.com/mmcv/dist/cu118/torch2.1/index.html
  3. Install remaining dependencies
    pip install -r requirements.txt

Training

python world_track.py fit -c configs/t_fit.yml \
    -c configs/d_{multiviewx,wildtrack,synthehicle}.yml \
    -c configs/m_{mvdet,segnet,liftnet,bevformer}.yml

Testing

python world_track.py test -c model_weights/config.yaml \
    --ckpt model_weights/model-epoch=35-val_loss=6.50.ckpt

Acknowledgement

Citation

@article{teepe2023lifting,
      title={Lifting Multi-View Detection and Tracking to the Bird's Eye View}, 
      author={Torben Teepe and Philipp Wolters and Johannes Gilg and Fabian Herzog and Gerhard Rigoll},
      year={2024},
      eprint={2403.12573},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}