Big data storage and processing / HUST / 20201
Prerequisites
- Docker
- Docker Compose
- MongoDB
- Kafka Setup
- Run docker-compose.yml
$ cd deployment $ docker-compose -f docker-compose.yml up -d
- Exec into kafka container to create topic
$ docker exec -it kafka /bin/sh $ cd opt $ cd bitnami $ cd kafka $ cd bin
- Create/Delete topic
# tạo kafka-topics.sh --create --zookeeper zookeeper:2181 --replication-factor 1 --partitions 1 --topic movie # xóa kafka-topics.sh --delete --zookeeper zookeeper:2181 --topic movie
- Consumer Setup
-
Usage:
Start consumer that get message from kafka and store into mongodb. Usage: adlq consumer [flags] Flags: --brokers string kafka broker address list, separated by comma -h, --help help for consumer --mongo-co string specify mongodb collection (default "movies") --mongo-db string specify mongodb database (default "imdb") --mongo-uri string mongodb connection uri (default "mongodb://localhost:27017") --topic string kafka topic Global Flags: --config string config file (default is $HOME/.adlq.yaml)
-
Run:
go run main.go consumer [flags]
- Producer Setup
-
Usage:
Start producer that scrape movie data by year from imdb, and produce to kafka Usage: adlq producer [flags] Flags: --broker string kafka broker address -h, --help help for producer --topic string kafka topic --year int specify year to scrape movies (default 2021) Global Flags: --config string config file (default is $HOME/.adlq.yaml)
-
Run
go run main.go producer [flags]
- MongoDB Charts Setup
- File
.yml
available indeployment
- Follow the instruction at Install MongoDB Charts
- Open browser at
localhost:9699