This package provides a method to generate all ordered combinations out of a given string array. This essentially creates the powerset of the given array except that the empty set is disregarded.
Take a look at the godoc for examples.
In general when you have e.g. []string{"A", "B", "C"}
you will get:
[
["A"],
["B"],
["A", "B"],
["C"],
["A", "C"],
["B", "C"],
["A", "B", "C"]
]
The algorithm iterates over each number from 1
to 2^length(input)
, separating it by binary components and utilizes the true/false interpretation of binary 1's and 0's to extract all unique ordered combinations of the input slice.
E.g. a binary number 0011
means selecting the first and second index from the slice and ignoring the third and fourth. For input {"A", "B", "C", "D"}
this signifies the combination {"A", "B"}
.
For input slice {"A", "B", "C", "D"}
there are 2^4 - 1 = 15
binary combinations, so mapping each bit position to a slice index and selecting the entry for binary 1
and discarding for binary 0
gives the full subset as:
1 = 0001 => ---A => {"A"}
2 = 0010 => --B- => {"B"}
3 = 0011 => --BA => {"A", "B"}
4 = 0100 => -C-- => {"C"}
5 = 0101 => -C-A => {"A", "C"}
6 = 0110 => -CB- => {"B", "C"}
7 = 0111 => -CBA => {"A", "B", "C"}
8 = 1000 => D--- => {"D"}
9 = 1001 => D--A => {"A", "D"}
10 = 1010 => D-B- => {"B", "D"}
11 = 1011 => D-BA => {"A", "B", "D"}
12 = 1100 => DC-- => {"C", "D"}
13 = 1101 => DC-A => {"A", "C", "D"}
14 = 1110 => DCB- => {"B", "C", "D"}
15 = 1111 => DCBA => {"A", "B", "C", "D"}