/tf-inputs

Input pipelines for TensorFlow that make sense.

Primary LanguagePythonMIT LicenseMIT

tf-inputs

This package provides easy-to-write input pipelines for TensorFlow that automatically integrate with the tf.data API.

Overview

A quick, full example of a training script with an optimized input pipeline:

import tensorflow as tf
import tf_inputs as tfi

# Recursively find all files inside directory and parse them with `parse_fn`.
inputs = tfi.Input.from_directory(
    "/path/to/data_dir", parse_fn=tf.image.decode_png, batch_size=16,
    num_parallel_calls=4
)

# Supposing `my_model_fn` builds the computational graph of some image model.
# Built Keras style-- calling the instance returns the iterator input tensor,
# and until this is done, no ops are added to the computational graph.
train_op, outputs = my_model_fn(inputs())

# Training loop.
with tf.Session().as_default():
    inputs.initialize()  # or `sess.run(inputs.initializer)` is fine too
    while True:
        try:
            inputs.run(train_op)  # replace `sess.run` with `inputs.run`
        except tf.errors.OutOfRangeError:
            break

You may still use sess.run if you prefer, though we override it to automatically handle feed_dict passing for TensorFlow's feedable iterators and placeholders. If you need to pass an explicit session you may also use inputs.run(ops, session=sess).

Installation

tf-inputs supports TensorFlow 1.13 and python 3.7. We use no other 3rd party python modules. Make sure to have your favorite TensorFlow binary installed (i.e., tensorflow, tensorflow-gpu, or your own custom wheel built from source) prior to installing tf-inputs.

pip install tf-inputs

Switch between training and validation datasets

This can get quite messy with the tf.data API. See the documentation yourself. tf-inputs handles it this way:

train_inputs = tfi.Input.from_directory("/data/training", **options)
valid_inputs = tfi.Input.from_directory("/data/validation", **options)
inputs = tfi.TrainValidInput(train_inputs, valid_inputs)

...

with tf.Session().as_default():
    inputs.initialize()
    inputs.run([train_op, output_op])  # receives a training batch
    inputs.run(output_op, valid=True)  # receives a validation batch

If you do not have separate datasets for training and validation, you may use:

inputs = tfi.TrainValidSplit(inputs, num_valid_examples)

Methods to read data

tf-inputs supports a variety of ways to read data besides Input.from_directory:

# Provide the file paths yourself:
inputs = tfi.Input.from_file_paths(["data/file1.txt", "data/file2.txt"], **options)
# Provide the `tf.data.Dataset` instance yourself (yielding single input elements):
inputs = tfi.Input.from_dataset(dataset, **blah)
# Same as above, but preventing any graph building a priori:
inputs = tfi.Input.from_dataset_fn(get_dataset, **blah)
# Lowest level: subclass `tfi.Input` and override `read_data` to return the dataset:
class MyInput(tfi.Input):
    def __init__(self, my_arg, my_kwarg="foo", **kwargs):
        super().__init__(**kwargs)
        self.my_arg = myarg
        ...
    
    def read_data(self):
        return tf.data.Dataset.from_tensor_slices(list(range(self.my_arg)))

Usually there is no need to use the lower level methods. One common example is when the user wishes to yield (input, label) pairs and they live in different files. You may use tfi.Zip for this, as long as the number of elements match:

# Multi task learning training input pipeline.
sentences_en = tfi.Input.from_directory("data/training/english")
sentences_fr = tfi.Input.from_directory("data/training/french")
sentiment_labels = tfi.Input.from_directory("data/training/labels")

inputs = tfi.Zip(images, sentences_fr, sentiment_labels)

def my_model(inputs, training=True):
    if training:
        x, y1, y2 = inputs
    ...

Training over multiple epochs

Just catch the tf.errors.OutOfRangeError and restart the iterator:

# Inside a `tf.Session`:
inputs.initialize()
while epoch < max_epochs:
    try:
        inputs.run(train_op)
    except tf.errors.OutOfRangeError:
        inputs.initialize()
        epochs += 1

Multiple elements per file

Just set flatten=True flag with Input.from_directory or Input.from_file_paths:

# Inputs split by an arbitrary delimiter in a text file:
inputs = tfi.Input.from_directory(
    'path/to/text/files', batch_size=32, flatten=True,
    parse_fn=lambda x: tf.string_split(x, delimiter='\n\n'),
)