/rasa-webchat

A chat widget easy to connect to chatbot platforms such as Rasa Core

Primary LanguageJavaScriptMIT LicenseMIT

webchat

A simple webchat widget to connect with a chatbot. Forked from react-chat-widget

Features

  • Text Messages
  • Quick Replies
  • Images and Videos
  • Snippet style for links (only as responses for now)
  • Markdown support
  • Easy to import in a script tag or as a React Component
  • Persistent sessions

demonstration

Setup

In a <script> tag

In your <body/>:

<div id="webchat"/>
<script src="https://storage.googleapis.com/mrbot-cdn/webchat-0.5.5.js"></script>
<script>
  WebChat.default.init({
    selector: "#webchat",
    initPayload: "/get_started",
    interval: 1000, // 1000 ms between each message
    customData: {"userId": "123"}, // arbitrary custom data. Stay minimal as this will be added to the socket
    socketUrl: "http://localhost:5500",
    socketPath: "/socket.io/",
    title: "Title",
    subtitle: "Subtitle",
    inputTextFieldHint: "Type a message...",
    connectingText: "Waiting for server...",
    hideWhenNotConnected: true,
    fullScreenMode: false,
    profileAvatar: "http://to.avat.ar",
    openLauncherImage: 'myCustomOpenImage.png',
    closeLauncherImage: 'myCustomCloseImage.png',
    params: {
      images: {
        dims: {
          width: 300,
          height: 200,
        }
      },
      storage: "local"
    }
  })
</script>

About images: width and height define the size in pixels that images in messages are crop-scaled to. If not present, the image will scale to the maximum width of the container and the image.

It is recommended to use a particular version (i.e. "webchat-.js") however the file "webchat-latest.js" is also available and is updated continuously with the latest version.

As a React component

Install the package from GitHub by running:

npm install mrbot-ai/rasa-webchat

Then once it is installed it can be implemented as follows.

import { Widget } from 'rasa-webchat';

function CustomWidget = () => {
  return (
    <Widget
      interval={2000}
      initPayload={"/get_started"}
      socketUrl={"http://localhost:5500"}
      socketPath={"/socket.io/"}
      customData: {{"userId": "123"}}, // arbitrary custom data. Stay minimal as this will be added to the socket
      title={"Title"}
      inputTextFieldHint={"Type a message..."}
      connectingText={"Waiting for server..."}
      hideWhenNotConnected
      embedded={true}
      openLauncherImage="myCustomOpenImage.png"
      closeLauncherImage="myCustomCloseImage.png"
      params={{
        images: {
          dims: {
            width: 300,
            height: 200
          }
        },
        storage: "local"
      }}
    />
  )
}
  • Make sure to have the prop embedded set to true if you don't want to see the launcher.

Backend

Rasa Core

Use the SocketIOInput channel: See instructions in the Rasa Core documentation

If you want to process customData in Rasa Core you have to create a new channel. Use channel rasa_core.channels.socketio as a template for your new channel. In such channel customData can be retrieved via data['customData']. Then you can modify sender_id, save customData to the database, fill slots or whatever you need to with your additional data.

Others

Your backend must expose a socket with socket.io

Receiving messages from the chat
@socketio.on('user_uttered')
    def handle_message(message):
        # do something
Sending messages from the backend to the chat widget
sending plain text
emit('bot_uttered', {"text": "hello"}, room=session_id)
sending quick replies
message = {
  "text": "Happy?",
  "quick_replies":[
    {"title":"Yes", "payload":"/affirm"},
    {"title":"No", "payload":"/deny"}
  ]}
emit('bot_uttered', message, room=socket_id)
sending a link Snippet

Admittedly a bit far fetched, thinking that Snippets would evolve to carousels of generic templates :)

message = {
  "attachment":{
    "type":"template",
    "payload":{
      "template_type":"generic",
      "elements":[
        {
          "title":"Title",
          "buttons":[ {
            "title":"Link name",
            "url": "http://link.url"
          }
        ]
      }
    ]
  }
}
}
emit('bot_uttered', message, room=socket_id)
sending a Video Message
message = {
  "attachment":{
    "type":"video",
    "payload":{
      "title":"Link name",
      "src": "https://www.youtube.com/watch?v=f3EbDbm8XqY"
    }
  }
}
emit('bot_uttered', message, room=socket_id)
sending an Image Message
message = {
      "attachment":{
        "type":"image",
        "payload":{
          "title":"Link name",
          "src": "https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcT_IX5FSDQLrwm9qvuXu_g7R9t_-3yBSycZ8OxpRXvMDaTAeBEW"
        }
      }
    }
emit('bot_uttered', message, room=socket_id)

Usage

Session Persistence

storage specifies the location where the the conversation and state of the WebChat is stored in the browser's storage.

storage: "session" defines the state to be stored in the session storage. The session storage persists on reload of the page, and is cleared after the browser or tab is closed, or when sessionStorage.clear()is called.

storage: "local" defines the state to be stored in the local stoage. The local storage persists after the the browser is closed, and is cleared when the cookies of the browser are cleared, or when localStorage.clear()is called.

Sending a message on page load

When reconnecting to an existing chat session, the bot will send a message contained in the localStorage key specified by the NEXT_MESSAGE constant. The message should be stringified JSON with a message property describing the message and an expiry property set to a UNIX timestamp in milliseconds after which this message should not be sent. This is useful if you would like your bot to be able to offer your user to navigate around the site.

docViewer

Note : this is an experimental feature

If you add this prop to the component or to the init script, docViewer=true , this will treat links in received messages as links to a document ( .pdf .doc .xlsx etc. ) and will open them in a popup using https://docs.google.com/viewer service

API

Method Description
WebChat.toggle() Toggle the open/close state of the chat window, send initPayload if webchat is not initialized and is toggled open
WebChat.open() Open the chat window, send initPayload if webchat is not initialized
WebChat.close() Close the chat window
WebChat.isOpen() Get the open/closed state of the widget
WebChat.show() Show the chat widget, send initPayload if the chat is in open state and not initialized
WebChat.hide() Hide the chat widget
WebChat.isVisible() Get the shown/hidden state of the widget

Styles

hierarchy:

.conversation-container
  |-- .header
        |-- .title
        |-- .close-function
        |-- .loading
  |-- .messages-container
        |-- .message
              |-- .client
              |-- .response
        |-- .replies
              |-- .reply
              |-- .response
        |-- .snippet
              |-- .snippet-title
              |-- .snippet-details
              |-- .link
        |-- .imageFrame
        |-- .videoFrame
  |-- .sender
        |-- .new-message
        |-- .send
Class Description
.widget-container The div containing the chatbox of the default version
.widget-embedded div of the embedded chatbox (using embedded prop)
.full-screen div of the fullscreen chatbox (using fullScreenMode prop)
.conversation-container the parent div containing the header, message-container and sender
.messages-container the central area where the messages appear
.sender div of the bottom area which prompts user input
.new-message the text input element of sender
.send the send icon element of sender
.header div of the top area with the chatbox header
.title the title element of the header
.close-button the close icon of the header
.loading the loading status element of the header
.message the boxes holding the messages of client and response
.replies the area that gives quick reply options
.snippet a component for describing links
.imageFrame a container for sending images
.videoFrame a container for sending video

Usage with Docker

Since you have to install the package from GitHub, npm will clone the repo to the global .npm directory before building the module in your node_modules directory. For this reason docker will have trouble installing the package, of course the global .npm directory doesn't exist in the container. To solve this simply add the following line in your Dockerfile before the RUN npm install command

RUN mkdir -p /root/.npm

Contributors

@PHLF @znat @TheoTomalty @Hub4IT @dliuproduction @MatthieuJnon