# GAN-MNIST
This is a task to using a GAN to generate fake MNIST images.
After cloning this repo, install dependencies
# [OPTIONAL] create conda environment
conda create --name pantheon-py38 python=3.8
conda activate pantheon-py38
# install requirements
pip install -r requirements.txt
Train model with experiment configuration
# default
python run.py experiment=train_mnist_gan.yaml
# train on CPU
python run.py experiment=train_mnist_gan.yaml trainer.gpus=0
# train on GPU
python run.py experiment=train_mnist_gan.yaml trainer.gpus=1
You can override any parameter from command line like this
python run.py experiment=train_mnist_gan.yaml trainer.max_epochs=20 datamodule.batch_size=32
- Baseline model (Original model without any change: lr: 0.00002; batch_size=32; epochs=20)
- CNN-Based GAN (CNN-based GAN: lr: 0.00002; batch_size=32; epochs=50)
- CNN-Based GAN on FashionMINST (CNN-based GAN: lr: 0.0002; batch_size=256; epochs=45)