This repository has some of my works on VAEs in Pytorch. At the moment I am doing experiments on usual non-hierarchical VAEs. ConvVAE architecture is based on this repo, and MLPVAE on this.
- Standard Gaussian based VAE
- Gamma reparameterized rejection sampling by Naesseth et al.. This implementation is based on the work of Mr. Altosaar.
Example 1:
$ python3 main.py
Example 2:
$ python3 main --model normal --epochs 5000
Example 3:
$ python3 main --model gamma --b_size 256
Example 4:
$ python3 main --model gamma --dataset mnist --z_dim 5
usage: main.py [-h] [--model M] [--epochs N] [--dataset D]
[--b_size B] [--z_dim Z]
optional arguments:
-h, --help show this help message and exit
--model M vae model to use: gamma | normal, default is normal
--epochs N number of total epochs to run, default is 10000
--dataset D dataset to run experiments (cifar-10 or mnist)
--b_size B batch size
--z_dim Z size of the latent space
- z_dim = 4
- b_size = 128
CIFAR-10 | MNIST | Binary MNIST | |
---|---|---|---|
KL | |||
Recons |
CIFAR-10 | MNIST | Binary MNIST | |
---|---|---|---|
KL | |||
Recons | |||
M Likelihood |
- To Mr. Altosaar (@altosaar) for helping me on some questions I had in his implementation and several other questions in the subject of VAEs.