This is the Readme file for NSGA-II code. About the Algorithm -------------------------------------------------------------------------- NSGA-II: Non-dominated Sorting Genetic Algorithm - II Please refer to the following paper for details about the algorithm: Authors: Dr. Kalyanmoy Deb, Sameer Agrawal, Amrit Pratap, T Meyarivan Paper Title: A Fast and Elitist multi-objective Genetic Algorithm: NSGA-II Journal: IEEE Transactions on Evolutionary Computation (IEEE-TEC) Year: 2002 Volume: 6 Number: 2 Pages: 182-197 --------------------------------------------------------------------------- How to compile and run the program --------------------------------------------------------------------------- Makefile has been provided for compiling the program on linux (and unix-like) systems. Edit the Makefile to suit your need. By default, provided Makefile attempts to compile and link all the existing source files into one single executable. Name of the executable produced is: nsga2r To run the program type: ./nsga2r random_seed Here random_seed is a real number in (0,1) which is used as a seed for random number generator. You can also store all the input data in a text file and use a redirection operator to give the inputs to the program in a convenient way. You may use the following syntax: ./nsga2r random_seed <inp_file.in, where "inp_file.in" is the file that stores all the input parameters --------------------------------------------------------------------------- About the output files --------------------------------------------------------------------------- initial_pop.out: This file contains all the information about initial population. final_pop.out: This file contains the data of final population. all_pop.out: This file containts the data of populations at all generations. best_pop.out: This file contains the best solutions obtained at the end of simulation run. params.out: This file contains the information about input parameters as read by the program. --------------------------------------------------------------------------- About the input parameters --------------------------------------------------------------------------- popsize: This variable stores the population size (a multiple of 4) ngen: Number of generations nobj: Number of objectives ncon: Number of constraints nreal: Number of real variables min_realvar[i]: minimum value of i^{th} real variable max_realvar[i]: maximum value of i^{th} real variable pcross_real: probability of crossover of real variable pmut_real: probability of mutation of real variable eta_c: distribution index for real variable SBX crossover eta_m: distribution index for real variable polynomial mutation nbin: number of binary variables nbits[i]: number of bits for i^{th} binary variable min_binvar[i]: minimum value of i^{th} binary variable max_binvar[i]: maximum value of i^{th} binary variable pcross_bin: probability of crossover for binary variable pmut_bin: probability of mutation for binary variable --------------------------------------------------------------------------- Defining the Test Problem --------------------------------------------------------------------------- Edit the source file problemdef.c to define your test problem. Some sample problems (24 test problems from Dr. Deb's book - Multi-Objective Optimization using Evolutionary Algorithms) have been provided as examples to guide you define your own objective and constraint functions. You can also link other source files with the code depending on your need. Following points are to be kept in mind while writing objective and constraint functions. 1. The code has been written for minimization of objectives (min f_i). If you want to maximize a function, you may use negetive of the function value as the objective value. 2. A solution is said to be feasible if it does not violate any of the constraints. Constraint functions should evaluate to a quantity greater than or equal to zero (g_j >= 0), if the solution has to be feasible. A negetive value of constraint means, it is being violated. 3. If there are more than one constraints, it is advisable (though not mandatory) to normalize the constraint values by either reformulating them or dividing them by a positive non-zero constant. --------------------------------------------------------------------------- About the files --------------------------------------------------------------------------- global.h: Header file containing declaration of global variables and functions rand.h: Header file containing declaration of variables and functions for random number generator allocate.c: Memory allocation and deallocation routines auxiliary.c: auxiliary routines (not part of the algorithm) crossover.c: Routines for real and binary crossover crowddist.c: Crowding distance assignment routines decode.c: Routine to decode binary variables dominance.c: Routine to perofrm non-domination checking eval.c: Routine to evaluate constraint violation fillnds.c: Non-dominated sorting based selection initialize.c: Routine to perform random initialization to population members list.c: A custom doubly linked list implementation merge.c: Routine to merge two population into one larger population mutation.c: Routines for real and binary mutation nsga2r.c: Implementation of main function and the NSGA-II framework problemdef.c: Test problem definitions rand.c: Random number generator related routines rank.c: Rank assignment routines report.c: Routine to write the population information in a file sort.c: Randomized quick sort implementation tourselect.c: Tournament selection routine --------------------------------------------------------------------------- Please feel free to send questions/comments/doubts/suggestions/bugs etc. to deb@iitk.ac.in Dr. Kalyanmoy Deb 25th March 2005 http://www.iitk.ac.in/kangal/ --------------------------------------------------------------------------- Currently being maintained by: Darshit Shah BITS-Pilani 21st October, 2012 ---------------------------------------------------------------------------