The python-constraint
module offers efficient solvers for Constraint Satisfaction Problems (CSPs) over finite domains in an accessible Python package.
CSP is class of problems which may be represented in terms of variables (a, b, ...), domains (a in [1, 2, 3], ...), and constraints (a < b, ...).
This interactive Python session demonstrates basic operations:
>>> from constraint import *
>>> problem = Problem()
>>> problem.addVariable("a", [1,2,3])
>>> problem.addVariable("b", [4,5,6])
>>> problem.getSolutions()
[{'a': 3, 'b': 6}, {'a': 3, 'b': 5}, {'a': 3, 'b': 4},
{'a': 2, 'b': 6}, {'a': 2, 'b': 5}, {'a': 2, 'b': 4},
{'a': 1, 'b': 6}, {'a': 1, 'b': 5}, {'a': 1, 'b': 4}]
>>> problem.addConstraint(lambda a, b: a*2 == b,
("a", "b"))
>>> problem.getSolutions()
[{'a': 3, 'b': 6}, {'a': 2, 'b': 4}]
>>> problem = Problem()
>>> problem.addVariables(["a", "b"], [1, 2, 3])
>>> problem.addConstraint(AllDifferentConstraint())
>>> problem.getSolutions()
[{'a': 3, 'b': 2}, {'a': 3, 'b': 1}, {'a': 2, 'b': 3},
{'a': 2, 'b': 1}, {'a': 1, 'b': 2}, {'a': 1, 'b': 3}]
The following example solves the classical Eight Rooks problem:
>>> problem = Problem()
>>> numpieces = 8
>>> cols = range(numpieces)
>>> rows = range(numpieces)
>>> problem.addVariables(cols, rows)
>>> for col1 in cols:
... for col2 in cols:
... if col1 < col2:
... problem.addConstraint(lambda row1, row2: row1 != row2,
... (col1, col2))
>>> solutions = problem.getSolutions()
>>> solutions
>>> solutions
[{0: 7, 1: 6, 2: 5, 3: 4, 4: 3, 5: 2, 6: 1, 7: 0},
{0: 7, 1: 6, 2: 5, 3: 4, 4: 3, 5: 2, 6: 0, 7: 1},
{0: 7, 1: 6, 2: 5, 3: 4, 4: 3, 5: 1, 6: 2, 7: 0},
{0: 7, 1: 6, 2: 5, 3: 4, 4: 3, 5: 1, 6: 0, 7: 2},
...
{0: 7, 1: 5, 2: 3, 3: 6, 4: 2, 5: 1, 6: 4, 7: 0},
{0: 7, 1: 5, 2: 3, 3: 6, 4: 1, 5: 2, 6: 0, 7: 4},
{0: 7, 1: 5, 2: 3, 3: 6, 4: 1, 5: 2, 6: 4, 7: 0},
{0: 7, 1: 5, 2: 3, 3: 6, 4: 1, 5: 4, 6: 2, 7: 0},
{0: 7, 1: 5, 2: 3, 3: 6, 4: 1, 5: 4, 6: 0, 7: 2},
...]
This example solves a 4x4 magic square:
>>> problem = Problem()
>>> problem.addVariables(range(0, 16), range(1, 16 + 1))
>>> problem.addConstraint(AllDifferentConstraint(), range(0, 16))
>>> problem.addConstraint(ExactSumConstraint(34), [0, 5, 10, 15])
>>> problem.addConstraint(ExactSumConstraint(34), [3, 6, 9, 12])
>>> for row in range(4):
... problem.addConstraint(ExactSumConstraint(34),
[row * 4 + i for i in range(4)])
>>> for col in range(4):
... problem.addConstraint(ExactSumConstraint(34),
[col + 4 * i for i in range(4)])
>>> solutions = problem.getSolutions()
The following solvers are available:
- Backtracking solver
- Optimized backtracking solver
- Recursive backtracking solver
- Minimum conflicts solver
Predefined constraint types currently available:
FunctionConstraint
AllDifferentConstraint
AllEqualConstraint
MaxSumConstraint
ExactSumConstraint
MinSumConstraint
MaxProdConstraint
MinProdConstraint
InSetConstraint
NotInSetConstraint
SomeInSetConstraint
SomeNotInSetConstraint
Documentation for the module is available at: http://python-constraint.github.io/python-constraint/.
It can be built locally by running make clean html
from the docs folder.
For viewing RST files locally, restview is recommended.
$ pip install python-constraint
Run nox
(tests for all supported Python versions in own virtual environment).
To test against your local Python version: make sure you have the development dependencies installed.
Run pytest
(optionally add --no-cov
if you have the C-extensions enabled).
Feel free to contribute by submitting pull requests or opening issues. Please refer to the contribution guidelines before doing so.
This GitHub organization and repository is a global effort to help to maintain python-constraint
, which was written by Gustavo Niemeyer and originaly located at https://labix.org/python-constraint.
For an overview of recent changes, visit the Changelog.
Planned development:
- Add a string parser for constraints
- Add parallel-capable solver
- Versioned documentation
But it's probably better to open an issue.