Visualization and experiments framework for training Deep learning and Machine learning algorithms.
Help to keep track of experiments by saving the results and configurations on single html file.
- Visualization for real time signals
- Written in Python 3
- Based on Bokeh
- Python 3
- Bokeh
- Run bokeh in a separated terminal
~$ bokeh serve
- Run the Python script
~$ python3 example_signals.py
# Import the plot
from LogPlotBokeh import LogPlot
# Create an instance
log = LogPlot(name="Title",
properties=["Reward", "Avr_Reward"],
properties_telemetry=["speedX", "steer"],
output_path="."
)
# Feed data to both plots and the text log
episode_progres = {"Reward":10, "Avr_Reward":20}
log.progress.add(x=i, y=episode_progres)
# telemetry
telemetry = {"speedX":10, "accel":20}
log.telemetry.add(x=i, y=telemetry)
# Add some text to the log
log.terminal("Model parameters %d" % i)
# Close
log.close()
- Improve performance
- Remove the use of Bokeh client
- GPL v3
Free Software